GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4)
  • 2015-2019  (4)
Document type
Years
Year
  • 1
    Publication Date: 2021-02-08
    Description: Highlights: • We compare proxy moisture records in Northeast Asia with the results from a transient simulation. • An east–west antiphasing of summer precipitation in Northeast Asia during the Holocene is found. • The East Asian summer monsoon circulation and mid-latitude westerlies caused the zonal precipitation contrast. Abstract: The East Asian summer monsoon (EASM) is a complex system that brings precipitation to East Asia showing considerable spatiotemporal variations. This study explored the zonal differences of summer precipitation in Northeast Asia at orbital timescales during the Holocene by comparing proxy records with simulation results. At orbital timescales, there was generally an east–west antiphasing of summer precipitation in Northeast Asia during the Holocene. Model–proxy comparison revealed that the driest interval occurred during the late Holocene in western Northeast Asia and during the early to middle Holocene in eastern Northeast Asia. Changes of summer precipitation in western Northeast Asia were mainly influenced by precession-driven EASM circulation. On the one hand, a weaker EASM circulation during the late Holocene weakened water vapor transport from the North Pacific Ocean to Northeast Asia, and on the other hand it was associated with anomalous downward motions in western Northeast Asia. Both factors were in favor of a reduction of summer precipitation in western Northeast Asia during the late Holocene. In contrast, anomalous downward motions prevailed in eastern Northeast Asia during the early to middle Holocene, which were probably related to stronger western Pacific subtropical high and weaker westerlies. The effect of the anomalous downward motions overwhelmed the enhanced water vapor transport, leading to a dry climate in this area from the early to middle Holocene. This study suggests that special care should be taken when discussing the meridional shift of the Holocene climatic optimum in the EASM region due to the zonal precipitation contrast.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The Sahara is the world's largest dust source with significant impacts on trans-Atlantic terrestrial and large-scale marine ecosystems. Contested views about a gradual or abrupt onset of Saharan aridity at the end of the African Humid Period dominate the current scientific debate about the Holocene Saharan desiccation. In this study, we present a 19.63 m sediment core sequence from Lake Sidi Ali (Middle Atlas, Morocco) at the North African desert margin. We reconstruct the interaction between Saharan dust supply and Western Mediterranean hydro-climatic variability during the last 12,000 yr based on analyses of lithogenic grain-sizes, XRF geochemistry and stable isotopes of ostracod shells. A robust chronological model based on AMS 14C dated pollen concentrates supports our multi-proxy study. At orbital-scale there is an overall increase in southern dust supply from the Early Holocene to the Late Holocene, but our Northern Saharan dust record indicates that a gradual Saharan desiccation was interrupted by multiple abrupt dust increases before the ‘southern dust mode‘ was finally established at 4.7 cal ka BP. The Sidi Ali record features millennial peaks in Saharan dust increase at about 11.1, 10.2, 9.4, 8.2, 7.3, 6.6, 6.0, and 5.0 cal ka BP. Early Holocene Saharan dust peaks coincide with Western Mediterranean winter rain minima and North Atlantic cooling events. In contrast, Late Holocene dust peaks correspond mostly with prevailing positive phases of the North Atlantic Oscillation. By comparing with other North African records, we suggest that increases in Northern Saharan dust supply do not solely indicate sub-regional to regional aridity in Mediterranean Northwest Africa but might reflect aridity at a trans-Saharan scale. In particular, our findings support major bimillennial phases of trans-Saharan aridity at 10.2, 8.2, 6.0 and 4.2 cal ka BP. These phases coincide with North Atlantic cooling and a weak African monsoon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Identifying the relationships between moisture changes in arid central Asia and those in East Asia may help us understand the interplay between the westerlies and the Asian summer monsoon. We combined proxy moisture records with the results from a transient simulation forced by changes in orbital parameters to analyse their relationships during the Holocene (9.5–0 ka BP). The proxy records and simulation results generally agree with a relatively dry early Holocene, the wettest period in the middle Holocene, and a dry late Holocene in East Asia. These periods were not solely controlled by precession-driven East Asian summer monsoon variability, but were significantly influenced by precipitation during the other seasons and by evaporation. However, different proxy records show contrasting results for moisture changes in arid central Asia during the Holocene. To study this, we analysed the climatic signals of the competing proxy records by comparing these proxy records with simulation results. We found that speleothem δ18O was significantly influenced by water vapour sources and evaporation rather than by the amount of precipitation. Thus, the model data reveals a persistent wetting trend throughout the Holocene that was out-of-phase with the trend in East Asia. The wetting trend in arid central Asia was caused by precipitation that increased faster than evaporation during the Holocene. The enhanced water vapour input from South Asia and the Middle East was the main cause of the increase in precipitation in arid central Asia, which in turn gave rise to the intensification of evaporation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-04
    Description: Differentiating thermokarst basin sediments with respect to the involved processes and environmental conditions is an important tool to understand permafrost landscape dynamics and scenarios and future trajectories in a warming Arctic and Subarctic. Thermokarst basin deposits have complex sedimentary structures due to the variability of Yedoma source sediments, reworking during the Late Glacial to Holocene climate changes, and different stages of thermokarst history. Here we reconstruct the dynamic growth of thermokarst lakes and basins and related changes of depositional conditions preserved in sediment sequences using a combination of biogeochemical data and robust grain-size endmember analysis (rEMMA). This multi-proxy approach is used on 10 sediment cores (each 300–400 cm deep) from two key thermokarst sites to distinguish four time slices that describe the Holocene thermokarst (lake) basin evolution in Central Yakutia (CY). Biogeochemical proxies and rEMMA reveal fine-grained sedimentation with rather high lake levels and/or reducing conditions, and coarse-grained sedimentation with rather shallow lake levels and/or oxidizing (i.e. terrestrial) conditions in relation to distal and proximal depositional and post-sedimentary conditions. Statistical analysis suggests that the biogeochemical parameters are almost independent of thermokarst deposit sedimentology. Thus, the biogeochemical parameters are considered as signals of secondary (post-sedimentary) reworking. The rEMMA results are clearly reflecting grain-size variations and depositional conditions. This indicates small-scale varying depositional environments, frequently changing lake levels, and predominantly lateral expansion at the edges of rapidly growing small thermokarst lakes and basins. These small bodies finally coalesced, forming the large thermokarst basins we see today in CY. Considering previous paleoenvironmental reconstructions in Siberia, we show the initiation of thaw and subsidence during the Late Glacial to Holocene transition between about 11 and 9 cal kyrs BP, intensive and extensive thermokarst activity for the Holocene Thermal Maximum (HTM) at about 7 to 5 cal kyrs BP, severely fluctuating water levels and further lateral basin growth between 3.5 cal kyrs BP and 1.5 cal kyrs BP, and the cessation of thermokarst activity and extensive frost-induced processes (i.e. permafrost aggradation) after about 1.5 cal kyrs BP. However, gradual permafrost warming over recent decades, in addition to human impacts, has led to renewed high rates of subsidence and abrupt, rapid CY thermokarst processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...