GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • PERGAMON-ELSEVIER SCIENCE LTD  (1)
  • 2015-2019  (3)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • We review the knowledge on modern high-latitude planktic foraminifers. • Subpolar species currently invade higher latitudes. • Climate change affects phenology, seawater pH, and carbon turnover. • Modern planktic foraminifers are briefly discussed for their paleoceanographic significance. Abstract Planktic foraminifers can be sensitive indicators of the changing environment including both the Arctic Ocean and Southern Ocean. Due to variability in their ecology, biology, test characteristics, and fossil preservation in marine sediments, they serve as valuable archives in paleoceanography and climate geochemistry over the geologic time scale. Foraminifers are sensitive to, and can therefore provide proxy data on ambient water temperature, salinity, carbonate chemistry, and trophic conditions through shifts in assemblage (species) composition and the shell chemistry of individual specimens. Production and dissolution of the calcareous shell, as well as growth and remineralization of the cytoplasm, affect the carbonate counter pump and to a lesser extent the soft-tissue pump, at varying regional and temporal scales. Diversity of planktic foraminifers in polar waters is low in comparison to lower latitudes and is limited to three native species: Neogloboquadrina pachyderma, Turborotalita quinqueloba, and Globigerina bulloides, of which N. pachyderma is best adapted to polar conditions in the surface ocean. Neogloboquadrina pachyderma hibernates in brine channels in the lower layers of the Antarctic sea ice, a strategy that is presently undescribed in the Arctic. In open Antarctic and Arctic surface waters T. quinqueloba and G. bulloides increase in abundance at lower polar to subpolar latitudes and Globigerinita uvula, Turborotalita humilis, Globigerinita glutinata, Globorotalia inflata, and Globorotalia crassaformis complement the assemblages. Over the past two to three decades there has been a marked increase in the abundance of Orcadia riedeli and G. uvula in the subpolar and polar Indian Ocean, as well as in the northern North Atlantic. This paper presents a review of the knowledge of polar and subpolar planktic foraminifers. Particular emphasis is placed on the response of foraminifers to modern warming and ocean acidification at high latitudes and the implications for data interpretation in paleoceanography and paleoclimate research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: An important tool for deep-sea temperature reconstruction is Mg/Ca paleothermometry applied to benthic foraminifera. Foraminifera of the genus Melonis appear to be promising candidates for temperature reconstructions due to their wide geographical and bathymetric distribution, and their infaunal habitat, which was suggested to reduce secondary effects from carbonate ion saturation (Δ[CO3 2−]). Here, we make substantial advances to previous calibration efforts and present new multi-lab Mg/Ca data for Melonis barleeanum and Melonis pompilioides from more than one hundred core top samples spanning in situ bottom temperatures from −1 to 16 °C, coupled with morphometric analyses of the foraminifer tests. Both species and their morphotypes seem to have a similar response of Mg/Ca to growth temperature. Compilation of new and previously published data reveals a linear dependence of temperature on Mg/Ca, with a best fit of Mg/Ca (mmol/mol) = 0.113 ± 0.005 ∗ BWT (°C) + 0.792 ± 0.036 (r2 = 0.81; n = 120; 1σ SD). Salinity, bottom water Δ[CO3 2−], and varying morphotypes have no apparent effect on the Mg/Ca-temperature relationship, but pore water Δ[CO3 2−] might have had an influence on some of the samples from the tropical Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Organic Geochemistry, PERGAMON-ELSEVIER SCIENCE LTD, 102, pp. 93-105, ISSN: 0146-6380
    Publication Date: 2017-01-30
    Description: A robust understanding of past oceanographic variability in the Southern Ocean is important because of its role in modulating global climate change. Here, we analyzed the distributions of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), both non-hydroxylated and the more recently discovered hydroxylated ones, in a well studied 500 kyr sediment record (core PS2489-2) from the Atlantic sector of the Southern Ocean and reconstructed past sea surface temperature. Given the uncertainty in the GDGT temperature indices, we appraised existing calibrations by comparing them with other temperature proxies and cold-water mass indicators determined from the same core. None of the existing calibrations afforded temporal trends and/or absolute values consistent with other better constrained temperature proxies. Using an extended compilation from a global core top hydroxylated GDGT data set, we examined if the disagreement might stem from the calibration data set and the definition of the GDGT indices. Among the new GDGT indices tested, the OHC index (an extended TEX86 index modified similarly to the UK37 index) and OHL (including a log function similar to TEX86L) showed temporal variability that was the most consistent with other proxies. However, they also gave unrealistic sub-zero glacial temperature values, which may have been caused by a biased calibration due to the small calibration data set, and/or a shift in production or export depth of GDGTs during glacial stages which, in turn, result in a GDGT-temperature relationship different from that during the interglacial stages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...