GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin : Duncker & Humblot
    Keywords: Electronic books
    Type of Medium: Online Resource
    Pages: 1 online resource (103 pages)
    Edition: 1st ed.
    ISBN: 9783428427581
    Series Statement: Schriften des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung
    Language: German
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-13
    Description: Highlights: • A joint analysis of deep current meter records in the western North Atlantic. • Intra-seasonal variability dominates the deep boundary current. • Topographic waves near 10d periods trapped over steep topography. • Basin centers are showing longer periods (50d) caused by the eddy field. • Observed variability characteristics compared to high resolution model simulation. Abstract The Deep Western Boundary Current (DWBC) along the western margin of the subpolar North Atlantic is an important component of the deep limb of the Meridional Overturning near its northern origins. A network of moored arrays from Denmark Strait to the tail of the Grand Banks has been installed for almost two decades to observe the boundary currents and transports of North Atlantic Deep Water as part of an internationally coordinated observatory for the Atlantic Meridional Overturning Circulation. The dominant variability in all of the moored velocity time series is in the week-to-month period range. While the temporal characteristics of this variability change only gradually between Denmark Strait and Flemish Cap, a broad band of longer term variability is present farther along the path of the DWBC at the Grand Banks and in the interior basins (Labrador and Irminger Seas). The vigorous intra-seasonal variability may well mask possible interannual to decadal variability that is typically an order of magnitude smaller than the high-frequency fluctuations. Here, the intra-seasonal variability is quantified at key positions along the DWBC path using both, observations and high resolution model data. The results are used to evaluate the model circulation, and in turn the model is used to relate the discrete measurements to the overall pattern of the subpolar circulation. Topographic waves are found to be trapped by the steep topography all around the western basins, the Labrador and Irminger Seas. In the Labrador Sea, the high intra-seasonal variability of the boundary current regime is separated by a region of extremely low variability in narrow recirculation cells from the basin interior. There, the variability is also on intra-seasonal timescales, but at much longer periods around 50 days.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-31
    Description: River water is the main source of dissolved organic carbon (DOC) in the Arctic Ocean. DOC plays an important role in the Arctic carbon cycle, and its export from land to sea is expected to increase as ongoing climate change accelerates permafrost thaw. However, transport pathways and transformation of DOC in the land-to-ocean transition are mostly unknown. We collected DOC and aCDOM(λ) samples from 11 expeditions to river, coastal and offshore waters and present a new DOC–aCDOM(λ) model for the fluvial–marine transition zone in the Laptev Sea. The aCDOM(λ) characteristics revealed that the dissolved organic matter (DOM) in samples of this dataset are primarily of terrigenous origin. Observed changes in aCDOM(443) and its spectral slopes indicate that DOM is modified by microbial and photo-degradation. Ocean colour remote sensing (OCRS) provides the absorption coefficient of coloured dissolved organic matter (aCDOM(λ)sat) at λ=440 or 443 nm, which can be used to estimate DOC concentration at high temporal and spatial resolution over large regions. We tested the statistical performance of five OCRS algorithms and evaluated the plausibility of the spatial distribution of derived aCDOM(λ)sat. The OLCI (Sentinel-3 Ocean and Land Colour Instrument) neural network swarm (ONNS) algorithm showed the best performance compared to in situ aCDOM(440) (r2=0.72). Additionally, we found ONNS-derived aCDOM(440), in contrast to other algorithms, to be partly independent of sediment concentration, making ONNS the most suitable aCDOM(λ)sat algorithm for the Laptev Sea region. The DOC–aCDOM(λ) model was applied to ONNS-derived aCDOM(440), and retrieved DOC concentration maps showed moderate agreement to in situ data (r2=0.53). The in situ and satellite-retrieved data were offset by up to several days, which may partly explain the weak correlation for this dynamic region. Satellite-derived surface water DOC concentration maps from Medium Resolution Imaging Spectrometer (MERIS) satellite data demonstrate rapid removal of DOC within short time periods in coastal waters of the Laptev Sea, which is likely caused by physical mixing and different types of degradation processes. Using samples from all occurring water types leads to a more robust DOC–aCDOM(λ) model for the retrievals of DOC in Arctic shelf and river waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...