GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (7)
  • PANGAEA  (7)
  • Springer
  • 2015-2019  (14)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Steinle, Lea; Graves, Carolyn; Treude, Tina; Ferre, Benedicte; Biastoch, Arne; Bussmann, Ingeborg; Berndt, Christian; Krastel, Sebastian; James, Rachael H; Behrens, Erik; Böning, Claus W; Greinert, Jens; Sapart, Célia-Julia; Scheinert, Markus; Sommer, Stefan; Lehmann, Moritz F; Niemann, Helge (2015): Water column methanotrophy controlled by a rapid oceanographic switch. Nature Geoscience, 8(5), 378–382, https://doi.org/10.1038/ngeo2420
    Publication Date: 2023-03-03
    Description: Large amounts of the greenhouse gas methane are released from the seabed to the water column where it may be consumed by aerobic methanotrophic bacteria. This microbial filter is consequently the last marine sink for methane before its liberation to the atmosphere. The size and activity of methanotrophic communities, which determine the capacity of the water column methane filter, are thought to be mainly controlled by nutrient and redox dynamics, but little is known about the effects of ocean currents. Here, we report measurements of methanotrophic activity and biomass (CARD-FISH) at methane seeps west of Svalbard, and related them to physical water mass properties (CTD) and modelled current dynamics. We show that cold bottom water containing a large number of aerobic methanotrophs was rapidly displaced by warmer water with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current, constitutes a rapid oceanographic switch severely reducing methanotrophic activity in the water column. Strong and fluctuating currents are widespread oceanographic features common at many methane seep systems and are thus likely to globally affect methane oxidation in the ocean water column.
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Scott, Rebecca; Biastoch, Arne; Agamboue, Pierre D; Bayer, Till; Boussamba, Francois L; Formia, Angela; Godley, Brendan J; Mabert, Brice D K; Manfoumbi, Jean C; Schwarzkopf, Franziska; Sounguet, Guy-Philippe; Wagner, Patrick; Witt, Matthew J (2017): Spatio-temporal variation in ocean current-driven hatchling dispersion: Implications for the world's largest leatherback sea turtle nesting region. Diversity and Distributions, https://doi.org/10.1111/ddi.12554
    Publication Date: 2023-10-28
    Description: This data set describes the location of virtual floats representing turtle hatchlings throughout 60 modeled years. Floats were constrained to remain within depths of 0-6 m due to the positive buoyancy of hatchlings. Floats were first assigned to one of 20,000 random release locations within a large release area 125-400 km offshore from nesting beaches throughout the Republic/Democratic Republic of the Congo, Gabon and Equatorial Guinea spanning latitudes of c. 6°S to 3.5°N. For each month over the 4-month long hatching season (January-April), each of the 20,000 floats was assigned a random release day and drift simulations ran every year during the period 1960-2007 resulting in drift trajectories of approx. 4 million virtual floats. See Scott et al., 2017, Spatio-temporal variation in ocean current-driven hatchling dispersion: Implications for the world's largest leatherback sea turtle nesting region. Diversity Distrib, http://dx.doi.org/10.1111%2Fddi.12554 for details as to the model parameters. Each data set consists of data on the float ID (number 1,2,3 etc..) and its trajectory attributes (latitude/longitude) at each time step. Data are also provided on the temperature, salinity and density of the float at its respective position/time step. Data sets are sorted by float release date, and contain one data file for each year. Each data file has 11 columns, which contain the following data: float id, longitude, latitude, depth, time step, temperature, salinity, density, no time steps since start, distance to start point, bearing from start point
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; File content; File format; File name; File size; Model; Sea-turtle_model; SFB754; Uniform resource locator/link to model result file
    Type: Dataset
    Format: text/tab-separated-values, 60 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-27
    Keywords: 0; 1; 10; 100; 101; 102; 103; 104; 105; 106; 107; 108; 109; 11; 110; 111; 112; 113; 114; 115; 116; 117; 118; 119; 12; 120; 121; 122; 123; 124; 125; 126; 127; 128; 13; 14; 15; 16; 17; 18; 19; 2; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 3; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 4; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 5; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 6; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 7; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 8; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 9; 90; 91; 92; 93; 94; 95; 96; 97; 98; 99; Calculated; CTD, Sea-Bird SBE 911plus; CTD/Rosette; CTD-RO; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; Maria S. Merian; MSM38; MSM38_343; MSM38_344; MSM38_345; MSM38_347; MSM38_348; MSM38_349; MSM38_350; MSM38_354; MSM38_355; MSM38_358; MSM38_359; MSM38_360; MSM38_361; MSM38_363; MSM38_364; MSM38_365; MSM38_366; MSM38_367; MSM38_368; MSM38_369; MSM38_370; MSM38_372; MSM38_373; MSM38_374; MSM38_375; MSM38_376; MSM38_377; MSM38_378; MSM38_379; MSM38_380; MSM38_381; MSM38_382; MSM38_383; MSM38_384; MSM38_385; MSM38_386; MSM38_387; MSM38_388; MSM38_389; MSM38_390; MSM38_391; MSM38_392; MSM38_393; MSM38_394; MSM38_395; MSM38_396; MSM38_397; MSM38_398; MSM38_399; MSM38_400; MSM38_401; MSM38_402; MSM38_403; MSM38_404; MSM38_405; MSM38_406; MSM38_407; MSM38_408; MSM38_409; MSM38_410; MSM38_411; MSM38_412; MSM38_413; MSM38_414; MSM38_415; MSM38_417; MSM38_418; MSM38_419; MSM38_420; MSM38_421; MSM38_422; MSM38_423; MSM38_424; MSM38_425; MSM38_426; MSM38_427; MSM38_428; MSM38_429; MSM38_430; MSM38_431; MSM38_432; MSM38_433; MSM38_434; MSM38_435; MSM38_436; MSM38_437; MSM38_438; MSM38_439; MSM38_440; MSM38_441; MSM38_442; MSM38_443; MSM38_444; MSM38_445; MSM38_446; MSM38_447; MSM38_448; MSM38_449; MSM38_450; MSM38_451; MSM38_452; MSM38_453; MSM38_454; MSM38_455; MSM38_456; MSM38_457; MSM38_458; MSM38_459; MSM38_460; MSM38_461; MSM38_462; MSM38_463; MSM38_464; MSM38_465; MSM38_466; MSM38_467; MSM38_468; MSM38_469; MSM38_470; MSM38_471; MSM38_472; MSM38_473; MSM38_474; MSM38_475; MSM38_476; MSM38_477; MSM38_478; MSM38_479; MSM38_480; Oxygen; Oxygen sensor, SBE 43; Pressure, water; Salinity; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 2181198 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-02
    Keywords: Campaign of event; CTD/Rosette; CTD-RO; Date/Time of event; Depth, bottom/max; DEPTH, water; Event label; Latitude of event; Longitude of event; Maria S. Merian; MSM21/4; MSM21/4_546-2; MSM21/4_550-1; MSM21/4_551-1; MSM21/4_552-1; MSM21/4_553-1; MSM21/4_554-1; MSM21/4_555-1; MSM21/4_556-1; MSM21/4_557-1; MSM21/4_558-1; MSM21/4_559-1; MSM21/4_580-1; MSM21/4_581-1; MSM21/4_582-1; MSM21/4_583-1; MSM21/4_584-1; MSM21/4_613-1; MSM21/4_633-1; MSM21/4_634-1; MSM21/4_635-1; MSM21/4_636-1; MSM21/4_637-1; MSM21/4_638-1; MSM21/4_639-1; MSM21/4_640-1; MSM21/4_641-1; MSM21/4_642-1; MSM21/4_654-1; MSM21/4_655-1; North Greenland Sea; Salinity; Sample code/label; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 55415 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-02
    Keywords: 3H-CH4 incubation; Bacteria, methane oxidizing, abundance; Bottle number; Campaign of event; Cell density; CTD/Rosette; CTD-RO; Date/Time of event; Depth, bottom/max; DEPTH, water; Event label; Latitude of event; Longitude of event; Maria S. Merian; Methane; Methane oxidation rate; Methane oxidation rate, standard deviation; MSM21/4; MSM21/4_546-2; MSM21/4_550-1; MSM21/4_551-1; MSM21/4_552-1; MSM21/4_553-1; MSM21/4_554-1; MSM21/4_555-1; MSM21/4_556-1; MSM21/4_557-1; MSM21/4_558-1; MSM21/4_559-1; MSM21/4_580-1; MSM21/4_581-1; MSM21/4_582-1; MSM21/4_583-1; MSM21/4_584-1; MSM21/4_613-1; MSM21/4_633-1; MSM21/4_634-1; MSM21/4_635-1; MSM21/4_636-1; MSM21/4_637-1; MSM21/4_638-1; MSM21/4_639-1; MSM21/4_640-1; MSM21/4_641-1; MSM21/4_642-1; MSM21/4_654-1; MSM21/4_655-1; North Greenland Sea; Sample code/label; Turnover rate, methane oxidation; Turnover rate, standard deviation; Type
    Type: Dataset
    Format: text/tab-separated-values, 4829 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-18
    Keywords: 3H-CH4 incubation; Campaign of event; CTD/Rosette; CTD-RO; Date/Time of event; Depth, bottom/max; DEPTH, water; Event label; Latitude of event; Longitude of event; Methane; Methane oxidation rate; Methane oxidation rate, standard deviation; Norway, Norwegian Basin; POS419; POS419_599-2; POS419_615-9; POS419_654-33; POS419_671-36; Poseidon; Sample code/label; Turnover rate, methane oxidation; Turnover rate, standard deviation; Type
    Type: Dataset
    Format: text/tab-separated-values, 229 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-18
    Keywords: Campaign of event; CTD/Rosette; CTD-RO; Date/Time of event; Depth, bottom/max; DEPTH, water; Event label; Latitude of event; Longitude of event; Norway, Norwegian Basin; POS419; POS419_599-2; POS419_615-9; POS419_654-33; POS419_671-36; Poseidon; Salinity; Sample code/label; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-08
    Description: Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-08
    Description: Benthic storms are important for both the energy budget of the ocean and for sediment resuspension and transport. Using 30 years of output from a high-resolution model of the North Atlantic, it is found that most of the benthic storms in the model occur near the western boundary in association with the Gulf Stream and the North Atlantic Current, in regions that are generally co-located with the peak near-bottom eddy kinetic energy. A common feature are meander troughs in the near-surface jets that are accompanied by deep low pressure anomalies spinning up deep cyclones with near-bottom velocities of up to more than 0.5 m/s. A case study of one of these events shows the importance of both baroclinic and barotropic instability of the jet, with energy being extracted from the jet in the upstream part of the meander trough and partly returned to the jet in the downstream part of the meander trough. This motivates examining the 30-year time mean of the energy transfer from the (annual mean) background flow into the eddy kinetic energy. This quantity is shown to be co-located well with the region in which benthic storms and large increases in deep cyclonic relative vorticity occur most frequently, suggesting an important role for mixed barotropic-baroclinic instability driven cyclogenesis in generating benthic storms throughout the model simulation. Regions of largest energy transfer and most frequent benthic storms are found to be the Gulf Stream west of the New England Seamounts and the North Atlantic Current near Flemish Cap.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...