GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
  • 1990-1994  (6)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 81 (1994), S. 237-242 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 81 (1994), S. 237-242 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0975
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Molluscs are known to record environmental changes in their carbonate shells in detail. This paper reports the findings of a high-resolution analysis of stable oxygen isotopic compositions and light transmission properties of a shell of the reef-dwelling Pacific giant clamTridacna gigas. Our findings reveal that the annual growth rates and the longevity ofTridacna specimens can be readily determined by measuring the annual light attenuation pattern within the shell. Annual seasonal changes in water temperature are reflected with high resolution in the stable oxygen isotope ratios and in the light attenuation values of the aragonite shell. The inner shell ofT. gigas deposited below the pallial line revealing undisturbed shell accretion with high growth rates shows the maximum seasonal oxygen isotope range and the highest resolution in light attenuation changes. We suggest that this is the best part of the shell to reconstruct former seasonal surface water temperatures in tropical environments. Scanning electron microscopy (SEM) studies suggest that the annual growth patterns observed in transmitted light are generated by a complex pattern of daily growth increments with varying sizes of skeletal crystallites and varying amounts of organic carbon.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 369 (1994), S. 282-282 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR — One of the most fascinating results of the various studies on polar ice cores is the discovery of large-scale changes in atmospheric methane over the past few ice-age cycles1"3. Methane is a radiatively highly active greenhouse gas4, and so changes in its concentration are thought to ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The stable carbon and oxygen isotopic compositions of the massive coralPorites lobata collected from the Gulf of Eilat, Red Sea, in May 1987 were measured along the vertical growth axis. The isotopic compositions show annual periodicity. The variations along the isotopic profile, compared with the X-radiography, indicate that the high-density bands are enriched in18O and deposited during the season of lowest water temperature (winter). In contrast, the low-density bands are depleted in18O and deposited during the warmest seawater temperatures (summer). The stable carbon and the oxygen isotopic ratios are negatively correlated with a shift in phase. During the season of higher water temperatures and light intensity values (summer), the skeleton is depleted in18O and enriched in13C and vice versa for the winter time. The shift between the carbon and the oxygen isotopic curves reflects the shift between the seasonal light intensities and seasonal temperature variations in the shallow water. The oxygen isotope ratio was used to detect the seasonal variations in seawater temperatures. The coral aragonitic skeleton is depleted in18O compared to apparent equilibrium with ambient seawater. The disequilibria range from (ca.) -3.10‰ to -3.50‰ with an average value of 3.40‰. The isotope fractionation behavior during skeleton precipitation is discussed in light of the environmental variables.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-13
    Description: A high-resolution chronostratigraphy was established for Holes 680B and 686B, drilled during Ocean Drilling Program (ODP) Leg 112 off Peru. The stratigraphy is largely based on oxygen isotopes of benthic foraminifers and supplemented by data for organic-carbon content and sediment texture. At both drill sites, during isotope Stage 1, the sedimentation rate was more than twice that of the older stages, which partly reflects lack of compaction in the youngest sediments. In Hole 680B, located at the center of a modern coastal upwelling cell in a water depth of 252.5 m, the mean sedimentation rate is 6.6 cm/k.y. in isotope Stages 1 through 15. Hole 686B lies at the fringe of another active upwelling cell off Capo Nazca in a water depth of 447 m. A prominent hiatus is evident between 105 and 120 m below seafloor (bsf). The mean sedimentation rate is 17.1 cm/k.y. above the hiatus (isotope Stages 1 through 15) and about 100 cm/k.y. below.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Sections PDFPDF Tools Share Abstract Long‐term data characterizing the oceans' biological carbon pump are essential for understanding impacts of climate variability on marine ecosystems. The “Bakun upwelling intensification hypothesis” suggests intensified coastal upwelling due to a greater land‐sea temperature gradient influenced by global warming. We present long time series of bathypelagic (approximately 1,200–3,600 m) particle fluxes from a coastal (CBeu: 2003–2016) and an offshore (CBmeso: 1988–2016) sediment trap setting located in the Canary Current upwelling. Organic carbon (Corg) and biogenic opal (BSi, diatoms) fluxes were twofold to threefold higher at the coastal upwelling site compared to the offshore site, respectively, and showed higher seasonality with flux maxima in spring. A relationship between winter and spring BSi fluxes to the North Atlantic Oscillation index was best expressed at the offshore site CBmeso. Lithogenic (dust) fluxes regularly peaked in winter when frequent low‐altitude dust storms and deposition occurred, decreasing offshore by about threefold. We obtained a high temporal match of short‐term peaks of BSi and dust fluxes in winter to spring at the inner site CBeu. We found synchronous flux variations at both sites and an anomalous year 2005, characterized by high BSi and Corg fluxes under a low North Atlantic Oscillation. Corg and BSi fluxes revealed a decreasing trend from 2006 to 2016 at the coastal site CBeu, pointing to coastal upwelling relaxation during the last two decades. The permanent offshore upwelling zone of the deflected Canary Current represented by the flux record of CBmeso showed no signs of increasing upwelling as well which contradicts the Bakun hypothesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-30
    Description: Long‐term data characterizing the oceans' biological carbon pump are essential for understanding impacts of climate variability on marine ecosystems. The “Bakun upwelling intensification hypothesis” suggests intensified coastal upwelling due to a greater land‐sea temperature gradient influenced by global warming. We present long time series of bathypelagic (approximately 1,200–3,600 m) particle fluxes from a coastal (CBeu: 2003–2016) and an offshore (CBmeso: 1988–2016) sediment trap setting located in the Canary Current upwelling. Organic carbon (Corg) and biogenic opal (BSi, diatoms) fluxes were twofold to threefold higher at the coastal upwelling site compared to the offshore site, respectively, and showed higher seasonality with flux maxima in spring. A relationship between winter and spring BSi fluxes to the North Atlantic Oscillation index was best expressed at the offshore site CBmeso. Lithogenic (dust) fluxes regularly peaked in winter when frequent low‐altitude dust storms and deposition occurred, decreasing offshore by about threefold. We obtained a high temporal match of short‐term peaks of BSi and dust fluxes in winter to spring at the inner site CBeu. We found synchronous flux variations at both sites and an anomalous year 2005, characterized by high BSi and Corg fluxes under a low North Atlantic Oscillation. Corg and BSi fluxes revealed a decreasing trend from 2006 to 2016 at the coastal site CBeu, pointing to coastal upwelling relaxation during the last two decades. The permanent offshore upwelling zone of the deflected Canary Current represented by the flux record of CBmeso showed no signs of increasing upwelling as well which contradicts the Bakun hypothesis.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-23
    Description: A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analysed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales. High winter fluxes of biogenic silica (BSi), used as a measure of marine production (mostly by diatoms) largely correspond to a positive North Atlantic Oscillation (NAO) index (December–March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004–2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter and occasionally in summer/autumn enhanced particle sedimentation and carbon export on short timescales via the ballasting effect. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) might have weakened the relationships between fluxes and large-scale climatic oscillations. As phytoplankton biomass is high throughout the year, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by incorporating dust into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all bulk fluxes occurred during the strongest El Niño-Southern Oscillation (ENSO) in 1997–1999 where low fluxes were obtained for almost 1 year during the warm El Niño and high fluxes in the following cold La Niña phase. For decadal timescales, Bakun (1990) suggested an intensification of coastal upwelling due to increased winds (“Bakun upwelling intensification hypothesis”; Cropper et al., 2014) and global climate change. We did not observe an increase of any flux component off Cape Blanc during the past 2 and a half decades which might support this. Furthermore, fluxes of mineral dust did not show any positive or negative trends over time which might suggest enhanced desertification or “Saharan greening” during the last few decades.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 137, pp. 1-11, ISSN: 0079-6611
    Publication Date: 2017-06-01
    Description: We compared particle data from a moored video camera system with sediment trap derived fluxes at ∼1100 m depth in the highly dynamic coastal upwelling system off Cape Blanc, Mauritania. Between spring 2008 and winter 2010 the trap collected settling particles in 9-day intervals, while the camera recorded in-situ particle abundance and size-distribution every third day. Particle fluxes were highly variable (40–1200 mg m−2 d−1) and followed distinct seasonal patterns with peaks during spring, summer and fall. The particle flux patterns from the sediment traps correlated to the total particle volume captured by the video camera, which ranged from1 to 22 mm3 l−1. The measured increase in total particle volume during periods of high mass flux appeared to be better related to increases in the particle concentrations, rather than to increased average particle size. We observed events that had similar particle fluxes, but showed clear differences in particle abundance and size-distribution, and vice versa. Such observations can only be explained by shifts in the composition of the settling material, with changes both in particle density and chemical composition. For example, the input of wind-blown dust from the Sahara during September 2009 led to the formation of high numbers of comparably small particles in the water column. This suggests that, besides seasonal changes, the composition of marine particles in one region underlies episodical changes. The time between the appearance of high dust concentrations in the atmosphere and the increase lithogenic flux in the 1100 m deep trap suggested an average settling rate of 200 m d−1, indicating a close and fast coupling between dust input and sedimentation of the material.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...