GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • Elsevier  (1)
  • Springer  (1)
  • 2015-2019  (3)
  • 1995-1999
  • 1
    Publication Date: 2017-04-11
    Description: The domain of the surface ocean and lower atmosphere is a complex, highly dynamic component of the Earth system. Better understanding of the physics and biogeochemistry of the air–sea interface and the processes that control the exchange of mass and energy across that boundary define the scope of the Surface Ocean-Lower Atmosphere Study (SOLAS) project. The scientific questions driving SOLAS research, as laid out in the SOLAS Science Plan and Implementation Strategy for the period 2004–2014, are highly challenging, inherently multidisciplinary and broad. During that decade, SOLAS has significantly advanced our knowledge. Discoveries related to the physics of exchange, global trace gas budgets and atmospheric chemistry, the CLAW hypothesis (named after its authors, Charlson, Lovelock, Andreae and Warren), and the influence of nutrients and ocean productivity on important biogeochemical cycles, have substantially changed our views of how the Earth system works and revealed knowledge gaps in our understanding. As such SOLAS has been instrumental in contributing to the International Geosphere–Biosphere Programme (IGBP) mission of identification and assessment of risks posed to society and ecosystems by major changes in the Earth’s biological, chemical and physical cycles and processes during the Anthropocene epoch. SOLAS is a bottom-up organization, whose scientific priorities evolve in response to scientific developments and community needs, which has led to the launch of a new 10-year phase. SOLAS (2015–2025) will focus on five core science themes that will provide a scientific basis for understanding and projecting future environmental change and for developing tools to inform societal decision-making.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-31
    Description: Halogenated Very Short-lived Substances (VSLS), such as bromoform, dibromomethane and methyl iodide, are naturally produced in the oceans and are involved in ozone depletion in the troposphere and the stratosphere. The effect of climate change on the oceanic emissions of these compounds is not well quantified. Based on present-day observed global oceanic and atmospheric concentrations, and historic and future data from three CMIP5 models, past and future sea-to-air fluxes of these VSLS are calculated. The simulations are used to infer possible effects of projected changes of physical forcing on emissions in different oceanic regimes. CMIP5 model output for 1979–2100 from the historical scenario and the RCP scenarios 2.6 and 8.5 are used as input data for the emission calculations. Of the parameters that have the main influence on the sea-to-air fluxes, the global sea surface temperatures show a steady increase during the twenty-first century, while the projected changes of sea surface wind speed is very small. The calculated emissions based on the historical CMIP5 model runs (1979–2005) increased over the 26 year period and agree well with the emissions based on ERA-Interim data. The future sea-to-air fluxes of VSLS generally increase during the twenty-first century under the assumption of constant concentration fields in the ocean and atmosphere. The multi-model mean global emissions of bromoform increase by 29.4% (9.0%) between 1986 and 2005 and 2081–2100 under RCP 8.5 (2.6) and dibromomethane and methyl iodide emissions increase by 23.3% (6.4%) and 5.5% (1.5%), respectively. Uncertainties of the future emission estimates, driven by ongoing environmental changes such as changing oceanic productivity (not considered in this study) are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 17 (2017): 10837–10854, doi:10.5194/acp-17-10837-2017.
    Description: A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu seas. Humic- and protein-like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.
    Description: This work was supported by the EU project SHIVA under grant agreement no. FP7-ENV- 2007-1-226224 and by the BMBF grants SHIVA-Sonne (FKZ: 03G0218A). Astrid Bracher and Wee Cheah were funded via the HGF Young Investigator Group PHYTOOPTICS (VH-NG-300) from the Helmholtz Association through the President. Astrid Bracher’s contribution was also partly funded by ESRIN/ESA within the SEOM (Scientific Exploration of operational missions) – Sentinel for Science Synergy (SY-4Sci Synergy) program via the project SynSenPFT. Additional funding for Cathleen Schlundt, Christa A. Marandino and Sinikka T. Lennartz came from the Helmholtz Young Investigator Group of Christa A. Marandino, TRASE-EC (VH-NG-819), from the Helmholtz Association through the President’s Initiative and Networking Fund and the GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...