GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (43)
  • 2010-2014  (21)
Document type
Keywords
Language
Years
Year
  • 1
    Publication Date: 2011-08-31
    Description: Leptin has been shown to reduce hyperglycemia in rodent models of type 1 diabetes. We investigated the effects of leptin administration in University of California, Davis, type 2 diabetes mellitus (UCD-T2DM) rats, which develop adult-onset polygenic obesity and type 2 diabetes. Animals that had been diabetic for 2 mo were treated with s.c. injections of saline (control) or murine leptin (0.5 mg/kg) twice daily for 1 mo. Control rats were pair-fed to leptin-treated animals. Treatment with leptin normalized fasting plasma glucose and was accompanied by lowered HbA1c, plasma glucagon, and triglyceride concentrations and expression of hepatic gluconeogenic enzymes compared with vehicle (P 〈 0.05), independent of any effects on body weight and food intake. In addition, leptin-treated animals exhibited marked improvement of insulin sensitivity and glucose homeostasis compared with controls, whereas pancreatic insulin content was 50% higher in leptin-treated animals (P 〈 0.05). These effects coincided with activation of leptin and insulin signaling pathways and down-regulation of the PKR-like endoplasmic reticulum (ER) kinase/eukaryotic translation inhibition factor 2α (PERK-eIF2α) arm of ER stress in liver, skeletal muscle, and adipose tissue as well as increased pro-opiomelanocortin and decreased agouti-related peptide in the hypothalamus. In contrast, several markers of inflammation/immune function were elevated with leptin treatment in the same tissues (P 〈 0.05), suggesting that the leptin-mediated increase of insulin sensitivity was not attributable to decreased inflammation. Thus, leptin administration improves insulin sensitivity and normalizes fasting plasma glucose in diabetic UCD-T2DM rats, independent of energy intake, via peripheral and possibly centrally mediated actions, in part by decreasing circulating glucagon and ER stress.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Geophysical Research Abstracts, 18, EGU2016-16579, 2016
    Publication Date: 2020-02-12
    Description: We compute displacements of global SLR station coordinates by atmospheric loading based on surface pressure data from European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim data. Inhouse we generate two branches: firstly straightforward following Farrel’s theory but using updated load Love numbers, secondly from utilizing localized Green’s functions instead of global ones. Externally provided displacements are available f.i. from the International Mass Loading Service (IMLS) based on different input data and modeling. We compare these displacements and apply them to Satellite Laser Ranging (SLR) data processing of a recent six years period of the LAGEOS, LARES, AJISAI, STARLETTE and STELLA geodetic missions. We assess the impact of the loading models on precise orbit determination and Earth parameters of interest.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., subdaily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation of the updated ESA Earth System Model (updated ESM) for gravity mission simulation studies is organized as follows: The characteristics of the updated ESM along with some basic validation is presented in Volume 1. A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2, while Volume 3 contains the description of a strategy to derive realistic errors for the de-aliasing model of high-frequency mass variability in atmosphere and ocean.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: We apply synthetic aperture radar data and geophysical modeling to assess ground deformation changes at the 284 km2 large Toktogul Reservoir in Kyrgyzstan, Central Asia, which is used for hydropower generation and irrigation. The reservoir’s water level is prone to significant changes during the year, but also shows inter-annual variations due to overall water recession or accumulation. We use Envisat ASAR data to analyse the ground deformation during a time of exaggerated use of water between 2004 – 2009 (net water level drop of 60 m / 13.5 km3 ) and Sentinel-1 data to derive the ground deformation during a time of overall water level increase between 2014 – 2016 (net water level plus of 51 m / 11.2 km3 ). The deformation pattern was measured by generating an interferometric time-series using the Small BAseline Subset (SBAS) approach. After removing heavily impacting atmospheric effects by applying the elevation dependent powerlaw approach, results show that both sensors are able to image related uplift and subsidence signals in the order of approximately 1 mm per 1 m water level change for the investigated time periods. Moreover, time-series results from Sentinel-1 also resolve intra-annual changes induced by 40 m periodical water level changes. Reasons for this superior behaviour of Sentinel-1 data are a short temporal baseline of 12 days and a small orbital tube, which both lead to a higher temporal sampling compared to the Envisat setting and at the same time to a better correlation of points within the interferograms. The derived spatial pattern of land-deformation rate is validated against modeling of the elastic deformation, based on a Love-number approach. The load forcing due to lake-level changes is derived from satellite-based radar altimetry.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Geophysical Research Abstracts
    Publication Date: 2020-02-12
    Description: Short-term forecasts of atmospheric, oceanic, and terrestrial hydrospheric effective angular momentum functions (EAM) of Earth rotation excitation are combined with least-squares extrapolation and auto-regressive modelling to routinely predict polar motion (PM) and ∆UT1 for up to 90 days into the future. Based on several experiments with more than 500 individual hindcasts from 2016 and 2017, a best-performing parametrization for the method was identified. At forecast horizons of 10 days, the prediction accuracy is 3.02 mas and 5.39 mas for PM and ∆UT1, respectively, corresponding to improvements of 34% and 44% with respect to Bulletin A. At forecast horizons of 60 days, prediction accuracies are 12.52 mas and 107.96 mas for PM and ∆UT1, corresponding to improvements of 34% and 8% over Bulletin A. The 90 days-long EAM forecasts leading to those improved EOP predictions are routinely published once per day at www.gfz-potsdam.de/en/esmdata and are thus ready-for-use for operational EOP prediction efforts.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: Angular momentum forecasts for up to 10 days into the future, modeled from predicted states of the atmosphere, ocean and continental hydrosphere, are combined with the operational IERS EOP prediction bulletin A to reduce the prediction error in the very first day and to improve the subsequent 90-day prediction by exploitation of the revised initial state and trend information. EAM functions derived from ECMWF short-range forecasts and corresponding LSDM and OMCT simulations can account for high-frequency mass variations within the geophysical fluids for up to 7 days into the future primarily limited by the accuracy of the forecasted atmospheric wind fields. Including these wide-band stochastic signals into the first days of the 90-day statistical IERS predictions reduces the mean absolute prediction error even for predictions beyond day 10, especially for polar motion, where the presently used prediction approach does not include geophysical fluids data directly. In a hindcast experiment using 1 year of daily predictions from May 2011 till July 2012, the mean prediction error in polar motion, compared to bulletin A, is reduced by 32, 12, and 3 % for prediction days 10, 30, and 90, respectively. In average, the prediction error for medium-range forecasts (30–90 days) is reduced by 1.3–1.7 mas. Even for UT1-UTC, where AAM forecasts are already included in IERS bulletin A, we obtain slight improvements of up to 5 % (up to 0.5 ms) after day 10 due to the additional consideration of oceanic angular momentum forecasts. The improved 90-day predictions can be generated operationally on a daily basis directly after the publication of the related IERS bulletin A product finals2000A.daily.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: The influence of the elastic Earth properties on seasonal or shorter periodic surface deformations due to atmospheric surface pressure and terrestrial water storage variations is usually modeled by applying a local half-space model or an one dimensional spherical Earth model like PREM from which a unique set of elastic load Love numbers, or alternatively, elastic Green's functions are derived. The first model is valid only if load and observer almost coincide, the second model considers only the response of an average Earth structure. However, for surface loads with horizontal scales less than 2500 km2, as for instance, for strong localized hydrological signals associated with heavy precipitation events and river floods, the Earth elastic response becomes very sensitive to inhomogeneities in the Earth crustal structure. We derive a set of local Green's functions defined globally on a 1° × 1° grid for the 3-layer crustal structure TEA12. Local Green's functions show standard deviations of ±12% in the vertical and ±21% in the horizontal directions for distances in the range from 0.1° to 0.5°. By means of Green's function scatter plots, we analyze the dependence of the load response to various crustal rocks and layer thicknesses. The application of local Green's functions instead of a mean global Green's function introduces a variability of 0.5 − 1.0 mm into the hydrological loading displacements, both in vertical and in horizontal directions. Maximum changes due to the local crustal structures are from −25% to +26% in the vertical and −91% to +55% in the horizontal displacements. In addition, the horizontal displacement can change its direction significantly. The lateral deviations in surface deformation due to local crustal elastic properties are found to be much larger than the differences between various commonly used one-dimensional Earth models.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-28
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-26
    Description: GRACE/GRACE-FO Level-3 product based on GFZ RL06 Level-2B products (Dahle & Murböck, 2019) representing Ocean Bottom Pressure (OBP) variations provided at 1° latitude-longitude grids as defined over ocean areas. The OBP grids are provided in NetCDF format divided into yearly batches. The files each contain seven different variables: 1) 'barslv': gravity-based barystatic sea-level pressure 2) 'std_barslv': gravity-based barystatic sea-level pressure uncertainties 3) 'resobp': gravity-based residual ocean circulation pressure resobp 4) 'std_resobp': gravity-based residual ocean circulation pressure uncertainties 5) 'leakage': apparent gravity-based bottom pressure due to continental leakage 6) 'model_ocean': background-model ocean circulation pressure 7) 'model_atmosphere': background-model atmospheric surface pressure These Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/OBP
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-12
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...