GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (16)
  • 2010-2014  (6)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yodle, Chan; Baker, Alex R (2019): Influence of collection substrate and extraction method on the speciation of soluble iodine in atmospheric aerosols. Atmospheric-Environment-X, 1, 100009, https://doi.org/10.1016/j.aeaoa.2019.100009
    Publication Date: 2023-11-03
    Description: Total Suspended Particulate (TSP) aerosol samples were collected daily during the Stratospheric ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) cruise (FS Sonne, SO218) during 16 - 28 November 2011 through the South China and Sulu Seas. The samples were collected by Birgit Quack and Anke Schneider of GEOMAR, Kiel, Germany. The aerosol sampler was situation on the roof of the ship's wheelhouse and collection time for each sample varied between 13.0 and 24.7 hours. Samples were extracted with ultrapure water and the major ions Na+, NH4+, Mg2+, K+, Ca2+, Cl-, NO3-, SO42-, oxalate and Br- were determined by ion chromatography (IC). Total soluble iodine (TSI) was determined by inductively coupled plasma - mass spectrometry (ICP-MS) and iodide (I-) and iodate (IO3-) were determined by IC-ICP-MS. The dataset contains the atmospheric concentrations of all measured soluble major ions (in nmol m-3) and iodine species (in pmol m-3). The data for iodine species are reported in “The influence of collection substrate and extraction method on the speciation of soluble iodine in atmospheric aerosols”, Chan Yodle, Alex R. Baker, in preparation for Analytical and Bioanalytical Chemistry.
    Keywords: Air volume; Ammonium, soluble; Ammonium, soluble, standard deviation; Bromide, soluble; Bromide, soluble, standard deviation; Calcium, soluble; Calcium, soluble, standard deviation; Chloride, soluble; Chloride, soluble, standard deviation; CT; DATE/TIME; Elemental species separation and detection (IC-ICP-MS); Inductively coupled plasma - mass spectrometry (ICP-MS); Iodate, soluble; Iodate, soluble, standard deviation; Iodide, soluble; Iodide, soluble, standard deviation; Iodine, soluble; Iodine, soluble, standard deviation; Ion chromatography; LATITUDE; Latitude 2; LONGITUDE; Longitude 2; Magnesium, soluble; Magnesium, soluble, standard deviation; Nitrate, soluble; Nitrate, soluble, standard deviation; Oxalate, soluble; Oxalate, soluble, standard deviation; Potassium, soluble; Potassium, soluble, standard deviation; Quality code; Sample ID; SO218; SO218-track; Sodium, soluble; Sodium, soluble, standard deviation; Sonne; SONNE-SHIVA; South China Sea; Sulfate, soluble; Sulfate, soluble, standard deviation; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 330 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  IFM-GEOMAR Leibniz-Institute of Marine Sciences, Kiel University
    Publication Date: 2024-02-01
    Keywords: AEROS; Aerosol sampler; Aluminium, soluble; Aluminium, standard deviation; Aluminium, total; Ammonium; Ammonium, standard deviation; Calcium; Calcium, standard deviation; Chloride, standard deviation; Chloride in air; Date/time end; Date/time start; Event label; Iron, soluble; Iron, standard deviation; Iron, total; LATITUDE; Latitude 2; LONGITUDE; Longitude 2; Magnesium; Magnesium, standard deviation; Manganese, soluble; Manganese, standard deviation; Manganese, total; Nitrate; Nitrate, standard deviation; Nitrogen, total dissolved; Nitrogen, total dissolved, standard deviation; POS348; POS348_TM01; POS348_TM02; POS348_TM03; POS348_TM04; POS348_TM05; POS348_TM06; POS348_TM07; POS348_TM08; POS348_TM09; POS348_TM10; POS348_TM11; Poseidon; Potassium; Potassium, standard deviation; Sample volume; Sodium; Sodium, standard deviation; SOPRAN; Sulfate; Sulfate, standard deviation; Surface Ocean Processes in the Anthropocene; Titanium, soluble; Titanium, standard deviation; Zinc, soluble; Zinc, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 420 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  IFM-GEOMAR Leibniz-Institute of Marine Sciences, Kiel University
    Publication Date: 2024-02-01
    Keywords: 23-10; AEROS; Aerosol sampler; Aluminium, soluble; Aluminium, standard deviation; Bromide; Bromide, standard deviation; Cadmium, soluble; Cadmium, standard deviation; Calcium; Calcium, standard deviation; Chloride, standard deviation; Chloride in air; Cobalt, soluble; Cobalt, standard deviation; Copper, soluble; Copper, standard deviation; Date/time end; Date/time start; Event label; Iron, soluble; Iron, standard deviation; LATITUDE; Latitude 2; Lead, soluble; Lead, standard deviation; LONGITUDE; Longitude 2; Magnesium; Magnesium, standard deviation; Manganese, soluble; Manganese, standard deviation; Nickel, soluble; Nickel, standard deviation; Nitrate; Nitrate, standard deviation; Oxalate; Oxalate, standard deviation; POS399/2; POS399/2_TM01; POS399/2_TM02; POS399/2_TM03; POS399/2_TM04; POS399/2_TM05; POS399/2_TM06; POS399/2_TM07; POS399/2_TM08; POS399/2_TM09; POS399/2_TM10; POS399/2_TM11; POS399/2_TM12; POS399/3; POS399/3_TM13; POS399/3_TM14; POS399/3_TM15; POS399/3_TM16; Poseidon; Potassium; Potassium, standard deviation; Quality code; Sample volume; Sodium; Sodium, standard deviation; SOPRAN; Sulfate; Sulfate, standard deviation; Surface Ocean Processes in the Anthropocene; Thorium, soluble; Thorium, standard deviation; Titanium, soluble; Titanium, standard deviation; Vanadium, soluble; Vanadium, standard deviation; Zinc, soluble; Zinc, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 768 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-13
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-15
    Description: Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 22 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-21
    Description: Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (〈0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-23
    Description: Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30–50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-17
    Description: Atmospheric deposition of trace elements and isotopes (TEI) is an important source of trace metals to the open ocean, impacting TEI budgets and distributions, stimulating oceanic primary productivity, and influencing biological community structure and function. Thus, accurate sampling of aerosol TEIs is a vital component of ongoing GEOTRACES cruises, and standardized aerosol TEI sampling and analysis procedures allow the comparison of data from different sites and investigators. Here, we report the results of an aerosol analysis intercalibration study by seventeen laboratories for select GEOTRACES-relevant aerosol species (Al, Fe, Ti, V, Zn, Pb, Hg, NO3-, and SO42-) for samples collected in September 2008. The collection equipment and filter substrates are appropriate for the GEOTRACES program, as evidenced by low blanks and detection limits relative to analyte concentrations. Analysis of bulk aerosol sample replicates were in better agreement when the processing protocol was constrained (+/- 9% RSD or better on replicate analyses by a single lab, n = 7) than when it was not (generally 20% RSD or worse among laboratories using different methodologies), suggesting that the observed variability was mainly due to methodological differences rather than sample heterogeneity. Much greater variability was observed for fractional solubility of aerosol trace elements and major anions, due to differing extraction methods. Accuracy is difficult to establish without an SRM representative of aerosols, and we are developing an SRM for this purpose. Based on these findings, we provide recommendations for the GEOTRACES program to and macro-nutrients to the open ocean (Okin et al. 2011) and is a key component of the international GEOTRACES program (GEOTRACES Planning Group 2006). A priority of the GEOTRACES program is to quantify both major and trace elements (e. g., Al, Fe, Ti, V, Zn, Pb, and Hg) and species such as nitrate and sulfate in marine aerosols. Therefore, marine aerosol samples collected during GEOTRACES cruises must follow sampling protocols that permit the collection and analysis of as many elements and compounds as possible, while meeting the constraints associated with basin-wide oceanographic cruises (e. g., space limitations, high-frequency sampling, etc.).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...