GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (11)
  • 2010-2014  (6)
Document type
Years
Year
  • 11
    facet.materialart.
    Unknown
    INT PHYCOLOGICAL SOC
    In:  EPIC3Phycologia, INT PHYCOLOGICAL SOC, 52(6), pp. 625-636, ISSN: 0031-8884
    Publication Date: 2014-04-17
    Description: The dinoflagellate genus Azadinium includes species with a plate formula of po, cp, X, 4´, 3a, 6´´, 6C, 5S, 6´´´, 2´´´´ and is part of the family Amphidomataceae with an uncertain order affiliation. Among six species, at least two produce azaspiracids (AZAs), a group of lipophilic toxins that accumulate in shellfish and can cause human health problems. Diversity within the genus might be underestimated at present due to its small size. In the present study, we searched for Azadinium by incubating freshly collected sediments from the Yellow Sea off China and succeeded in detecting a new species, here described as Azadinium dalianense sp. nov. It shared identical hypothecal, cingular and sulcal plates with the other Azadinium species, but it was unique in having only three apical and two anterior intercalary plates. Up to two stalked pyrenoids were present but their location in the cell varied. Phylogenetic analyses based on concatenated smallsubunit, partial large-subunit, and internal transcribed spacer sequences revealed that A. dalianense was nested within Azadinium and formed a strongly supported clade with A. poporum. Liquid chromatography–mass spectrometry analyses did not detect any known AZAs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Harmful Algae, ELSEVIER SCIENCE BV, 27, pp. 68-81, ISSN: 1568-9883
    Publication Date: 2019-07-17
    Description: The toxigenic genus Alexandrium includes ∼30 species, but information about its biogeography at a regional scale is limited. In this study, we explored the diversity of Alexandrium along the coast of China by incubating resting cysts collected from 7 sites. A total of 231 strains of Alexandrium belonging to 7 morphospecies were found. Among them, Alexandrium andersonii, Alexandrium fraterculum, Alexandrium leei, Alexandrium pseudogonyaulax, and Alexandrium tamutum were recorded from the China Sea for the first time. Partial large subunit (LSU) and/or internal transcribed spacer region (ITS1, ITS2, and 5.8S rDNA) sequences revealed two ribotypes of Alexandrium andersonii, Alexandrium leei, and Alexandrium tamarense: Atama complex Group I and IV. Atama complex Group I was exclusively distributed in the Yellow Sea and the Bohai Sea, whereas Group IV was restricted to the East China Sea and South China Sea. Atama complex Group I produced mainly N-sulfocarbamoyl toxins (C1/C2, 61–79% of total toxins) and gonyautoxins (GTX1/4, 17–37%). Alexandrium ostenfeldii strain ASBH01 produced NEO and STX exclusively (65% and 35%, respectively). Our results support the premise that Atama complex Group I is endemic to the Asian Pacific and includes cold water species, whereas Atama complex Group IV tends to inhabit warmer waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-17
    Description: Around 30 epibenthic Prorocentrum species have been described, but information about their biogeography is limited. Some species are able to produce okadaic acid (OA) and its derivatives, which are responsible for diarrheic shellfish poisoning (DSP). In the present study, we examined the diversity of epibenthic Prorocentrum in the northern South China Sea by isolating single cells from sand, coral, and macroalgal samples collected from 2012 to 2015. Their morphology was examined using light microscopy and scanning electron microscopy. Among 47 Prorocentrum strains, seven morphospecies were identified as P. lima, P. rhathymum, P. concavum, P. cf. emarginatum, P. fukuyoi, P. cf. maculosum and P. panamense. The latter five species have not been previously reported in Chinese waters, and this is the first record of P. panamense outside its type locality. Partial large subunit (LSU) ribosomal DNA and internal transcribed spacer region sequences were obtained and molecular phylogenetic analysis was carried out using maximum likelihood and Bayesian inference. Chinese P. cf. maculosum strains share 99.5% similarity of LSU sequences with the strain from Cuba (close to the type locality), but Chinese P. lima strains share only 96.7% similarity of LSU sequences with the strain from the type locality. P. cf. emarginatum differs from P. fukuyoi mainly in the presence/absence of marginal pores and they form a well-resolved clade together with P. sculptile. OA was detected in all Chinese strains of P. lima and P. cf. maculosum based on liquid chromatography-mass spectrometry analysis, but dinophysistoxin was produced only by two P. lima strains. Chinese strains of P. concavum, P. rhathymum, and P. panamense do not produce detectable level of OA. Our results support the wide distribution of epibenthic Prorocentrum species and highlight the potential risk of DSP in the northern South China Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-17
    Description: The marine planktonic dinophyceaen genus Azadinium is a primary source of azaspiracids, but due to their small size its diversity may be underestimated and information on its biogeography is still limited. A new Azadinium species, A. zhuanum was obtained from the East China Sea and Yellow Sea of China by incubating surface sediments. Five strains were established by isolating single germinated cells and their morphology was examined with light microscopy and scanning electron microscopy. Azadinium zhuanum was characterized by a plate pattern of Po, cp, X, 4′, 2a, 6′′, 6C, 5S, 6′′′, 2′′′′, by a distinct ventral pore at the junction of Po, the first and fourth apical plates, and a conspicuous antapical spine. Moreover, Azadinium poporum was obtained for the first time from the Mediterranean by incubating surface sediment collected from Diana Lagoon (Corsica) and a new strain of Azadinium dalianense was isolated from the French Atlantic. The morphology of both strains was examined. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. In addition, LSU sequences were obtained by single cell sequencing of two presumable A. poporum cells collected from the French Atlantic. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences revealed that A. zhuanum was closest to A. polongum. French A. poporum from Corsica (Mediterranean) and from the Atlantic showed some genetic differences but were nested within one of the A. poporum ribotypes together with other European strains. Azadinium dalianense from France together with the type strain of the species from China comprised a well resolved clade now consisting of two ribotypes. Azaspiracid profiles were analyzed for the cultured Azadinium strains using LC–MS/MS and demonstrate that the Mediterranean A. poporum strain produced AZA-2 and AZA-2 phosphate with an amount of 0.44 fg cell−1. Azadinium zhuanum and A. dalianense did not produce detectable AZA. Results of the present study support the view of a high diversity and wide distribution of species belonging to Azadinium. The first record of AZA-2 producing A. poporum from the Mediterranean suggests that this species may be responsible for azaspiracid contaminations in shellfish from the Mediterranean Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Harmful Algae, ELSEVIER SCIENCE BV, 21-22, pp. 64-75, ISSN: 1568-9883
    Publication Date: 2019-07-17
    Description: Azadinium poporum is a small dinoflagellate from the family Amphidomataceae which is known for the production potential of azaspiracid toxins. A. poporum has been recorded from European and Korean waters. Here we present the first report of its occurrence along the coast of China. Morphology of Chinese A. poporum is similar to those from Europe and Korea. Several stalked pyrenoids surrounded by a starch sheath were revealed with light microscopy and confirmed by transmission electron microscopy. Among 25 strains from the China Sea we identified two distinct ribotypes (referred to as ribotypes B and C). ITS sequences of strains within the same ribotype are identical, whereas ribotype B and C differ from each other at 11 positions (98.3% similarity). A. poporum ribotypes B and C type differ from European strains (referred to as ribotype A) at 16 and 15 positions (97.5% and 97.7% similarity). The ITS region pairwise distance within A. poporum ranged from 0.017 to 0.022. Among all three ribotypes, no hemicompensatory based changes were found within helix III of ITS indicating that they are conspecific. Azaspiracid profiles were analyzed for six strains and turned out to be unexpectedly diverse. Whereas no AZAs could be detected for one strain, another strain was found to contain a m/z 348 fragment type AZA previously found in a Korean Isolate and traces of two other unknown AZAs of higher masses. A third strain produced a novel AZA with a molecular mass of 871 Da. Three strains were found to contain considerable amounts of toxic AZA-2 as the sole AZA, a finding that might elegantly explain the detection of AZA-2 in sponges in the Sea of Japan and which underline the risk potential of A. poporum blooms with subsequent shellfish intoxication episodes for the Asian Pacific.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  EPIC315th International Conference on harmful Algae, 2012-10-29-2012-11-02
    Publication Date: 2022-09-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...