GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alexandrium fundyense  (8)
  • 2015-2019  (2)
  • 2010-2014  (6)
Document type
Publisher
Years
  • 2015-2019  (2)
  • 2010-2014  (6)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 12 (2011): 26–38, doi:10.1016/j.hal.2011.08.009.
    Description: Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS - Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt ponds peaked and declined, a second, late season bloom occurred within the central portions of the NMS. The timing of this second bloom relative to those within the salt ponds and the coastal circulation patterns at that time strongly suggest that those cells originated from a regional A. fundyense bloom in the Gulf of Maine, delivered to the central marsh from coastal waters outside the NMS through Nauset Inlet. These results will guide policy decisions about water quality as well as shellfish monitoring and utilization within the NMS and highlight the potential for “surgical” closures of shellfish during PSP events, leaving some areas open for harvesting while others are closed.
    Description: This work was supported by NOAA Grant NA06OAR4170021, NPS Grant H238015504 and by the Woods Hole Center for Oceans and Human Health through NSF Grants OCE-0911031 and OCE-0430724 and NIEHS Grant 1P50-ES01274201. B.G.C. was supported by a Xunta de Galicia Ángeles Alvariño fellowship and the Stanley W. Watson Chair for Excellence in Oceanography under a Postdoctoral program at the Woods Hole Oceanographic Institution.
    Keywords: Paralytic shellfish poisoning ; Alexandrium fundyense ; Dinoflagellate cysts ; Bloom dynamics ; Retention mechanism ; Nauset Marsh System
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 58 (2011): 1130-1146, doi:10.1016/j.dsr.2011.08.009.
    Description: Observations and numerical modeling indicate that a mesoscale anti-cyclonic eddy formed south of Cape Ann at the northern entrance of Massachusetts Bay (MB) during May 2005, when large river discharges in the western Gulf of Maine and two strong Nor’easters passing through the regions led to an unprecedented toxic Alexandrium fundyense bloom (red tide). Both model results and field measurements suggest that the western Maine coastal current separated from Cape Ann around May 7-8, and the eddy formed on around May 10. The eddy was trapped at the formation location for about a week before detaching from the coastline and moving slowly southward on May 17. Both model results and theoretical analysis suggest that the separation of the coastal current from the coast and subsequent eddy formation were initiated at the subsurface by an adverse pressure gradient between Cape Ann and MB due to the higher sea level set up by onshore Ekman transport and higher density in downstream MB. After the formation, the eddy was maintained by the input of vorticity transported by the coastal current from the north, and local vorticity generation around the cape by the horizontal gradients of wind-driven currents, bottom stress, and water density induced by the Merrimack River plume. Observations and model results indicate that the anti-cyclonic eddy significantly changed the pathway of nutrient and biota transport into the coastal areas and enhanced phytoplankton including Alexandrium abundances around the perimeter of the eddy and in the western coast of MB.
    Description: MJ was partially supported by the MWRA for this work. Support for DMA and many of the cruise observations was provided by the GOMTOX project through NOAA Grant NA06NOS4780245. Additional cruise support came from NSF grant OCE-0430724, DMS-0417769 and NIEHS grant 1P50-ES01274201 (Woods Hole Center for Oceans and Human Health) and through NOAA ECOHAB Grant NA09NOS4780193.
    Keywords: Mesoscale eddy ; Headland ; Cape Ann ; Gulf of Maine ; Massachusetts Bay ; Merrimack River ; Freshwater plume ; Sub-mesoscale filaments ; Alexandrium fundyense ; Harmful algal bloom ; Red tide
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 38 (2015): 2240-2258, doi:10.1007/s12237-015-9949-z.
    Description: A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated model allows a quantitative assessment of the factors that contribute to the development of a recurrent harmful algal bloom and provides a framework for assessing similarly impacted coastal systems.
    Description: This work was supported by the National Science Foundation (OCE-0430724, OCE-0911031, and OCE-1314642) and National Institutes of Health (NIEHS-1P50-ES021923-01) through the Woods Hole Center for Oceans and Human Health, and by National Park Service (NPS) Cooperative Agreement H238015504.
    Description: 2016-03-17
    Keywords: Harmful algal bloom ; Hydrodynamic-biological model ; Alexandrium fundyense ; Residence time ; Cyst germination ; Growing degree day
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 62 (2017): 1742–1753, doi:10.1002/lno.10530.
    Description: While considerable effort has been devoted to understanding the factors regulating the development of phytoplankton blooms, the mechanisms leading to bloom decline and termination have received less attention. Grazing and sedimentation have been invoked as the main routes for the loss of phytoplankton biomass, and more recently, viral lysis, parasitism and programmed cell death (PCD) have been recognized as additional removal factors. Despite the importance of bloom declines to phytoplankton dynamics, the incidence and significance of various loss factors in regulating phytoplankton populations have not been widely characterized in natural blooms. To understand mechanisms controlling bloom decline, we studied two independent, inshore blooms of Alexandrium fundyense, paying special attention to cell mortality as a loss pathway. We observed increases in the number of dead cells with PCD features after the peak of both blooms, demonstrating a role for cell mortality in their terminations. In both blooms, sexual cyst formation appears to have been the dominant process leading to bloom termination, as both blooms were dominated by small-sized gamete cells near their peaks. Cell death and parasitism became more significant as sources of cell loss several days after the onset of bloom decline. Our findings show two distinct phases of bloom decline, characterized by sexual fusion as the initial dominant cell removal processes followed by elimination of remaining cells by cell death and parasitism.
    Description: This article is a result of research funded by the National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research ECOHAB program under award no. NA09NOS4780166 to the University of Texas Marine Science Institute (D.L.E) and the Woods Hole Center for Oceans and Human Health by National Science Foundation (NSF) award no. OCE-1314642 and National Institute of Environmental Health Sciences (NIEHS) award no. 1-P01-ES021923-014 to D.M.A. and M.L B.
    Keywords: Phytoplankton bloom dynamics ; Harmful Algal Blooms (HABs) declines ; Phytoplankton mortality ; Programmed cell death (PCD) ; Life cycle transitions ; Alexandrium fundyense
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 277-287, doi:10.1016/j.dsr2.2013.03.027.
    Description: Development of forecasting systems for harmful algal blooms (HABs) has been a long-standing research and management goal. Significant progress has been made in the Gulf of Maine, where seasonal bloom forecasts are now being issued annually using Alexandrium fundyense cyst abundance maps and a population dynamics model developed for that organism. Thus far these forecasts have used terms such as “significant”, “moderately large” or “moderate” to convey the extent of forecasted paralytic shellfish poisoning (PSP) outbreaks. In this study, historical shellfish harvesting closure data along the coast of the Gulf of Maine were used to derive a series of bloom severity levels that are analogous to those used to define major storms like hurricanes or tornados. Thirty-four years of PSP-related shellfish closure data for Maine, Massachusetts and New Hampshire were collected and mapped to depict the extent of coastline closure in each year. Due to fractal considerations, different methods were explored for measuring length of coastline closed. Ultimately, a simple procedure was developed using arbitrary straight-line segments to represent specific sections of the coastline. This method was consistently applied to each year’s PSP toxicity closure map to calculate the total length of coastline closed. Maps were then clustered together statistically to yield distinct groups of years with similar characteristics. A series of categories or levels was defined (“Level 1: Limited”, “Level 2: Moderate”, and “Level 3: Extensive”) each with an associated range of expected coastline closed, which can now be used instead of vague descriptors in future forecasts. This will provide scientifically consistent and simply defined information to the public as well as resource managers who make decisions on the basis of the forecasts.
    Description: Research support provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) Grants OCE-0430724, and OCE-0911031; and National Institute of Environmental Health Sciences (NIEHS) Grant 1-P50-ES012742-01, the ECOHAB Grant program through NOAA Grant NA06NOS4780245, and the PCM HAB Grant program through NOAA Grant NA11NOS4780023.
    Keywords: Alexandrium fundyense ; Harmful algal blooms ; HABs ; PSP ; Forecasts
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 6-26, doi:10.1016/j.dsr2.2013.10.002.
    Description: Here we document Alexandrium fundyense cyst abundance and distribution patterns over nine years (1997 and 2004-2011) in the coastal waters of the Gulf of Maine (GOM) and identify linkages between those patterns and several metrics of the severity or magnitude of blooms occurring before and after each autumn cyst survey. We also explore the relative utility of two measures of cyst abundance and demonstrate that GOM cyst counts can be normalized to sediment volume, revealing meaningful patterns equivalent to those determined with dry weight normalization.Cyst concentrations were highly variable spatially. Two distinct 1 seedbeds (defined here as accumulation zones with 〉 300 cysts cm-3) are evident, one in the Bay of Fundy (BOF) and one in mid-coast Maine. Overall, seedbed locations remained relatively constant through time, but their area varied 3-4 fold, and total cyst abundance more than 10 fold among years. A major expansion of the mid-coast Maine seedbed occurred in 2009 following an unusually intense A. fundyense bloom with visible red-water conditions, but that feature disappeared by late 2010. The regional system thus has only two seedbeds with the bathymetry, sediment characteristics, currents, biology, and environmental conditions necessary to persist for decades or longer. Strong positive correlations were confirmed between the abundance of cysts in both the 0-1 and the 0-3 cm layers of sediments in autumn and geographic measures of the extent of the bloom that occurred the next year (i.e., cysts → blooms), such as the length of coastline closed due to shellfish toxicity or the southernmost latitude of shellfish closures. In general, these metrics of bloom geographic extent did not correlate with the number of cysts in sediments following the blooms (blooms → cysts). There are, however, significant positive correlations between 0-3 cm cyst abundances and metrics of the preceding bloom that are indicative of bloom intensity or vegetative cell abundance (e.g., cumulative shellfish toxicity, duration of detectable toxicity in shellfish, and bloom termination date). These data suggest that it may be possible to use cyst abundance to empirically forecast the geographic extent of the forthcoming bloom and, conversely, to use other metrics from bloom and toxicity events to forecast the size of the subsequent cyst population as the inoculum for the next year’s bloom. This is an important step towards understanding the excystment/encystment cycle in A. fundyense bloom dynamics while also augmenting our predictive capability for this HAB-forming species in the GOM.
    Description: Research support provided by the ECOHAB Grant program through NOAA Grants NA06NOS4780245 and NA09NOS4780193, and through the Woods Hole Center for Oceans and Human Health, National 1 Science Foundation (NSF) Grants OCE-0430724, OCE-0911031, and OCE-1314642; and National Institute of Environmental Health Sciences (NIEHS) Grants 1-P50-ES012742-01 and 1-P01-ES021923-01, and funding through the states of ME, NH, and MA. We are also grateful for event response funding provided for many of the cruises. Funding for J.L. Martin was provided by Fisheries and Oceans Canada.
    Keywords: Alexandrium fundyense ; Cysts ; Resuspension ; Gulf of Maine ; Harmful algal bloom ; HAB ; Red tide ; Paralytic shellfish poisoning
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 79–95, doi:10.1016/j.dsr2.2013.10.011.
    Description: Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m−2 near Grand Manan Island, to 0.35 kg m−2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey–silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m−3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.
    Description: Research support to Donald M. Anderson and Bruce A. Keafer provided through the Woods Hole Center for Oceans and Human Health; National Science Foundation Grants OCE-0430724 and OCE-0911031; and National Institute of Environmental Health Sciences Grant 1-P50-ES012742-01; the ECOHAB Grant program through NOAA Grants NA06NOS4780245 and A09NOS4780193; the MERHAB Grant program through NOAA Grant NA11NOS4780025; and the PCMHAB Grant program through NOAA Grant NA11NOS4780023. Research support to all other authors was provided by U.S. Geological Survey.
    Keywords: Sediment transport ; Bottom stress ; Sediment resuspension ; Harmful algal blooms ; Gulf of Maine ; Alexandrium fundyense ; HAB
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 264-276, doi:10.1016/j.dsr2.2013.09.018.
    Description: A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978 – 2011). The Maine coastline was divided into two regions - eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index – a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike’s Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the others. This statistical underpinning can guide efforts to identify physical and/or biological mechanisms underlying the patterns revealed by the HAB Index. Although A. fundyense cyst survey data (limited to 9 years) do not span the entire interval of the shellfish toxicity records, this analysis leads us to hypothesize that major changes in the abundance of A. fundyense cysts may be a primary factor contributing to the decadal trends in shellfish toxicity in this region. The HAB Index approach taken here is simple but represents a novel and potentially useful tool for resource managers in many areas of the world subject to toxic HABs.
    Description: Research support provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) Grants OCE- 1128041 and OCE-1314642; and National Institute of Environmental Health Sciences (NIEHS) Grant 1-P50-ES021923-01, the ECOHAB Grant program through NOAA Grants NA06NOS4780245 and NA09NOS4780193, the MERHAB Grant program through NOAA Grant NA11NOS4780025, the PCMHAB Grant program through NOAA Grant NA11NOS4780023, and funding through the states of ME, NH, and MA. Funding for J.L. Martin was provided by Fisheries and Oceans Canada.
    Keywords: Alexandrium fundyense ; Harmful algal blooms ; HABs ; PSP ; HAB Index
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...