GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2024-03-15
    Description: The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC “business as usual” (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Containers and aquaria (20-1000 L or 〈 1 m**2); Cortisol; Dicentrarchus labrax; Dopamine; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); gamma-Aminobutyric acid; Gene expression; Gene expression (incl. proteomics); Glucose; Glutamate; Identification; Laboratory experiment; Laboratory strains; Nekton; Noradrenaline; Not applicable; Number; Number of squares; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Oxygen saturation; Oxygen saturation, standard error; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Replicate; Salinity; Salinity, standard error; Scenario; Serotonin; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Temperature, water, standard error; Time in minutes; Time in seconds; Type
    Type: Dataset
    Format: text/tab-separated-values, 6932 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-08
    Description: This study assessed the effect of projected ocean acidification and ocean warming on key fitness traits (growth, development and swimming ability) in European sea bass (Dicentrarchus labrax) larvae and juveniles. Starting at 2 days post-hatch (dph), larvae were exposed to one of three levels of PCO2 (650, 1150, 1700 μatm; pH 8.0, 7.8, 7.6) at either a cold (15˚C) or warm (20˚C) temperature. Growth rate, development stage and critical swimming speed (Ucrit) were repeatedly measured as sea bass grew from 0.6 to ~10.0 (cold) or ~14.0 (warm) cm body length. This dataset is included in the OA-ICC data compilation maintained in the framework of the IAEA Ocean Acidification International Coordination Centre (see https://oa-icc.ipsl.fr). Original data were downloaded from Dryad (see Source) by the OA-ICC data curator. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2024) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2024-05-10.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Body length; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Code; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; Dicentrarchus labrax; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; Identification; Laboratory experiment; Life stage; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen saturation; Oxygen saturation, standard error; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Replicate; Run; Salinity; Salinity, standard error; Sample ID; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Speed, swimming; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Time in days; Treatment: pH; Treatment: temperature; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 17132 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The development and physiology of herring larvae were monitored for individuals reared in control and combined warming-acidification crossed with different food quality treatments. The experiment revealed that warming and acidification triggers a stress response at the molecular level and decrease herring larvae size-at-stage. Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11 & DEG;C*pH 8.0) and a scenario predicted for 2100 (14 & DEG;C*pH 7.6) crossed with two feeding treatments (enriched in phosphorus and docosahexaenoic acid or not). The experiment lasted from hatching to the beginning of the post-flexion stage (i.e. all fins present) corresponding to 47 days post-hatch (dph) at 14 & DEG;C and 60 dph at 11 & DEG;C. Length and stage development were monitored throughout the experiment and the expression of genes involved in growth, metabolic pathways and stress responses were analysed for stage 3 larvae (flexion of the notochord). Although the growth rate was unaffected by acidification and temperature changes, the development was accelerated in the 2100 scenario, where larvae reached the last developmental stage at a smaller size (-8%). We observed no mortality related to treatments and no effect of food quality on the development of herring larvae. However, gene expression analyses revealed that heat shock transcripts expression was higher in the warmer and more acidic treatment. Our findings suggest that the predicted warming and acidification environment are stressful for herring larvae, inducing a decrease in size-at-stage at a precise period of ontogeny. This could either negatively affect survival and recruitment via the extension of the predation window or positively increase the survival by reducing the larval stage duration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-23
    Description: Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11°C∗pH 8.0) and a scenario predicted for 2100 (14°C∗pH 7.6) crossed with two feeding treatments (enriched in phosphorus and docosahexaenoic acid or not). The experiment lasted from hatching to the beginning of the post-flexion stage (i.e. all fins present) corresponding to 47 days post-hatch (dph) at 14°C and 60 dph at 11°C. Length and stage development were monitored throughout the experiment and the expression of genes involved in growth, metabolic pathways and stress responses were analysed for stage 3 larvae (flexion of the notochord). Although the growth rate was unaffected by acidification and temperature changes, the development was accelerated in the 2100 scenario, where larvae reached the last developmental stage at a smaller size (-8%). We observed no mortality related to treatments and no effect of food quality on the development of herring larvae. However, gene expression analyses revealed that heat shock transcripts expression was higher in the warmer and more acidic treatment. Our findings suggest that the predicted warming and acidification environment are stressful for herring larvae, inducing a decrease in size-at-stage at a precise period of ontogeny. This could either negatively affect survival and recruitment via the extension of the predation window or positively increase the survival by reducing the larval stage duration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...