GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (6)
Document type
Years
Year
  • 1
    Publication Date: 2024-01-30
    Description: Highlights • Global primitive arc lavas (Mg# ≥60) display notable δ49/47Ti heterogeneity. • Residual rutile imposes high δ49/47Ti of 0.24 ± 0.06 ‰ on hydrous, silicic slab melts. • Primitive Aleutian rhyodacites have the same δ49/47Ti as predicted for slab melts. • A variably diluted signature of slab melts is found in all eight subduction zones. • A slab melt component is required to generate silicic primitive arc lavas. Abstract It is still a matter of intense debate to what extent partial melting of the subducting slab contributes to arc magmatism in modern subduction zones. In particular, it is difficult to differentiate between silicate melts formed by partial melting of the slab, and aqueous fluids released during subsolidus dehydration as the main medium for slab-to-mantle wedge mass transfer. Here we use δ49/47Ti (the deviation in 49Ti/47Ti of a sample to the OL-Ti reference material) as a robust geochemical tracer of slab melting. Hydrous partial melting of subducted oceanic crust and the superjacent sedimentary layer produces silicic melts in equilibrium with residual rutile. Modelling shows that such silicic slab melts have notably higher δ49/47Ti (+0.24 ± 0.06 ‰) than their protolith due to the strong preference of rutile for the lighter isotopes of Ti. In contrast, even highly saline fluids cannot carry Ti from the slab and hence hydrous peridotite partial melts have δ49/47Ti similar to mid-ocean ridge basalts (MORB; ca. 0 ‰). Primitive (Mg# ≥60) arc lavas from eight subduction zones that are unaffected by fractional crystallisation of Fe-Ti oxides show a more than tenfold larger variation in δ49/47Ti than found in MORB. In particular, primitive arc lavas display a striking correlation between SiO2 content and δ49/47Ti that ranges from island arc basalts overlapping with MORB, to primitive rhyodacites with δ49/47Ti up to 0.26 ‰ erupted in the western Aleutian arc. The elevated δ49/47Ti of these primitive arc lavas provides conclusive evidence for partial melts of the slab as a key medium for mass transfer in subduction zones. The Aleutian rhyodacites represent a rare example of slab melts that have traversed the mantle wedge with minimal modification. More commonly, slab melts interact with the mantle wedge to form an array of primary arc magmas that are a blend of slab- and peridotite-derived melt. We identify primitive arc lavas with a clearly resolvable slab melt signature in all eight subduction zone localities, confirming that slab melting is prevalent in modern subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The magmatic character of early subduction zone and arc development is unlike mature systems. Low-Ti-K tholeiitic basalts and boninites dominate the early Izu-Bonin-Mariana (IBM) system. Basalts recovered from the Amami Sankaku Basin (ASB), underlying and located west of the IBM’s oldest remnant arc, erupted at ~49 Ma. This was 3 million years after subduction inception (51-52 Ma) represented by forearc basalt (FAB), at the tipping point between FAB-boninite and typical arc magmatism. We show ASB basalts are low-Ti-K, aluminous spinel-bearing tholeiites, distinct compared to mid-ocean ridge (MOR), backarc basin, island arc or ocean island basalts. Their upper mantle source was hot, reduced, refractory peridotite, indicating prior melt extraction. ASB basalts transferred rapidly from pressures (~0.7-2 GPa) at the plagioclase-spinel peridotite facies boundary to the surface. Vestiges of a polybaric-polythermal mineralogy are preserved in this basalt, and were not obliterated during persistent recharge-mix-tap-fractionate regimes typical of MOR or mature arcs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • The revised minimum subduction initiation age for the Aleutian system is 48 Ma. • The evolution of the arc was characterized by three distinct magmatic pulses. • The types of magmas erupted appear to have changed during the arc evolution. In order to further constrain the timing of the Aleutian Arc initiation as well as its early evolution, an extensive 40Ar/39Ar dating and geochemical (major and selected trace elements) campaign (40 samples) of the lower units of the Aleutian ridge has been carried out on samples dredged from deep fore-arc canyons and rear arc tectonic structures. The new dataset slightly increases the minimum inception age for the Aleutian system, with the two oldest samples dated at 46.1 ± 3.3 Ma and 47.80 ± 0.57 Ma. Both mid Eocene ages were obtained on tholeiitic mafic volcanic rocks from the western section of the arc. The new data also support the occurrence of three distinct periods of enhanced magmatic activity (magmatic pulses) during the pre-Quaternary evolution of the arc (at 38–27, 16–11 and 6–0 Ma), as previously suggested based on a more limited and dominantly subaerial dataset. Moreover, the data refine the duration of the first pulse of activity, which ended 2 Ma later than previous estimates. The first and last pulses may be associated with rotations of the subducting plates while the second pulse might result from regional tectonic changes. The significant overlap between the age distribution of the submarine and subaerial samples suggests that much of the earlier parts of the arc may have been uplifted and subaerially exposed. The expected crustal growth associated with the pulses is unlikely to have significantly impacted magmatic residence times, since no variation in the degree of differentiation of the rocks can be observed during or after the pulses. On the other hand, the type of magmas erupted may have changed during the arc evolution. Prior to the first pulse, activity appears to have been dominantly tholeiitic. On the other hand, the first pulse was characterized by coeval tholeiitic, transitional and calc-alkaline magmas, with calc-alkaline activity increasing after the first ~3 Ma. Subsequently, a dominantly calc-alkaline period occurred from 29 to 8 Ma, followed by a progressive return of coeval tholeiitic, transitional and calc-alkaline activity. These temporal changes in magma types correspond to likely variations in arc crustal thickness beneath the active front, and could therefore be a response to physical changes of the overriding plate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Constraining the behaviour of Re and Os during eclogite melting is required to understand the Re and Os budget and 187Os/188Os of recycled slabs produced at warm subduction zones. It is particularly relevant to early Earth history, a period during which slab melting could have prevailed over dehydration due to higher mantle temperatures. There are however currently few constraints on Re and Os mobility during slab melting. Accordingly, we measured Os, Re and 187Os/188Os in primitive submarine lavas (Mg# ˃ 0.6) from the western Aleutian Arc. These include strongly adakitic rocks shown to be derived from eclogite melting (high-Mg# andesite, dacites and rhyodacites), as well as non-adakitic rocks (high-Mg# andesites, basaltic andesites and basalts) with variable sediment and fluid-derived slab contributions for comparison. The 187Os/188Os of the adakitic and non-adakitic volcanic rocks vary significantly but largely overlap. In both groups, the most radiogenic values occur in samples with the lowest Os concentrations, thus implicating crustal assimilation as the main cause of Os isotope variations. Adakitic and non-adakitic rocks least affected by crustal assimilation have overlapping 187Os/188Os of 0.141–0.149. We show that the source of the adakites is very unlikely to comprise significant eclogite-derived Os, which suggests no or minimal mobilization of Os during eclogite melting. Eclogitic Os is inferred to be retained in sulphides or replacement phases formed upon sulphide breakdown for which Os has high affinity, such as a platinum-group minerals (PGMs). The small Os budget of the adakites is most likely derived from limited reaction with the mantle wedge during ascent. Degassing has reduced Re contents in most samples, but not for end-member adakites (SiO2 〉 67% and Sr/Y 〉 200; n = 4) that were erupted at seafloor depths 〉 2500 m. These undegassed samples have elevated Re concentrations (0.8–1.5 ppb) that are positively correlated with Sr/Y and so are interpreted to be primary magmatic concentrations resulting from the mobilization of Re from the slab. Re could either be derived from the eclogites or from the serpentinite-derived fluids fluxing eclogites during melting. The former scenario would produce recycled residual crusts with lower Re/Os than in unmelted eclogites while the latter would result in Re/Os ranging from similar to higher than prior to melting. In both cases, the Re/Os and therefore the time-integrated 187Os/188Os of residual crust produced at warm subduction zones involving slab melting are likely to be different from that processed at cooler typical modern subduction zones. Therefore, if slab melting was an important process during the early Earth, the use of Re and Os partitioning in modern subduction zones to model the source of magmas comprising old recycled oceanic crust, such as the HIMU (high μ = 238U/204Pb) ocean island basalts (OIBs), might lead to erroneous interpretations.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The oldest known, intact sedimentary record of a nascent intraoceanic arc was recovered in a ∼100-m-thick unit (IV) above ca. 49 Ma basaltic basement at International Ocean Discovery Program Site U1438 in the Amami Sankaku Basin. During deposition of Unit IV the site was located ∼250 km from the plate edge, where Izu-Bonin-Mariana subduction initiated at 52 Ma. Basement basalts are overlain by a mudstone-dominated subunit (IVC) with a thin basal layer of dark brown metalliferous mudstone followed by mudstone with sparse, graded laminae of amphibole- and biotite-bearing tuffaceous sandstone and siltstone. Amphibole and zircon ages from these laminae suggest that the intermediate subduction-related magmatism that sourced them initiated at ca. 47 Ma soon after basement formation. Overlying volcaniclastic, sandy, gravity-flow deposits (subunit IVB) have a different provenance; shallow water fauna and tachylitic glass fragments indicate a source volcanic edifice that rose above the carbonate compensation depth and may have been emergent. Basaltic andesite intervals in upper subunit IVB have textures suggesting emplacement as intrusions into unconsolidated sediment on a volcanic center with geochemical and petrological characteristics of mafic, differentiated island arc magmatism. Distinctive Hf-Nd isotope characteristics similar to the least-radiogenic Izu-Bonin-Mariana boninites support a relatively old age for the basaltic andesites similar to detrital amphibole dated at 47 Ma. The absence of boninites at that time may have resulted from the position of Site U1438 at a greater distance from the plate edge. The upper interval of mudstone with tuffaceous beds (subunit IVA) progresses upsection into Unit III, part of a wedge of sediment fed by growing arc-axis volcanoes to the east. At Site U1438, in what was to become a reararc position, the succession of early extensional basaltic magmatism associated with spontaneous subduction initiation is followed by a rapid transition into potentially widespread subduction-related magmatism and sedimentation prior to the onset of focused magmatism and major arc building.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-17
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...