GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Sustainable engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (525 pages)
    Edition: 1st ed.
    ISBN: 9781119678502
    DDC: 628
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Ecological Engineering and Ecosystem Services - Theory and Practice -- 1.1 Introduction -- 1.2 Ecological Engineering: History and Definition -- 1.3 Ecosystem Services: History, Concepts, and Dimensions -- 1.3.1 Sizing Ecosystem Services -- 1.3.2 Agriculture and Ecosystem Services -- 1.4 Final Considerations: Challenges for the Future -- Notes -- References -- Chapter 2 Ecological and Ecosystem Engineering for Economic-Environmental Revitalization -- 2.1 Introduction -- 2.2 Revitalization of Physical/Environmental Factors -- 2.2.1 Low Temperature -- 2.2.2 Limited Soil Drainage and Shallow Rooting Depth -- 2.2.3 Unfavorable Texture and Stoniness -- 2.2.4 Sloping Areas -- 2.2.5 Dryness -- 2.2.6 Waterlogging -- 2.3 Revitalization of Chemical Factors -- 2.3.1 Acidity -- 2.3.2 Heavy Metals and Organic Contaminants -- 2.3.3 Salinity and Sodicity -- 2.4 Economic Revitalization of Degraded Soil Ecosystems -- 2.5 Conclusions -- References -- Chapter 3 Environmental Issues and Priority Areas for Ecological Engineering Initiatives -- 3.1 Introduction -- 3.2 Basic Concepts of Ecological Engineering -- 3.3 Practice and Implication of Ecological Engineering -- 3.4 Priority Areas for Ecological Engineering -- 3.4.1 Coastal Ecosystem Restoration -- 3.4.2 Mangrove Restoration -- 3.4.3 River and Wetland Restoration -- 3.4.4 Ecological Engineering in Soil Restoration and Agriculture -- 3.5 Conclusion -- Notes -- References -- Chapter 4 Soil Meso- and Macrofauna Indicators of Restoration Success in Rehabilitated Mine Sites -- 4.1 Introduction -- 4.2 Restoration to Combat Land Degradation -- 4.3 Mine Rehabilitation -- 4.3.1 Mine Tailings -- 4.3.2 Rehabilitation of Mine Tailings -- 4.3.3 The Challenge of Metal Mine Rehabilitation. , 4.4 Restoration Success Assessment: Monitoring Diversity, Vegetation, and Ecological Processes -- 4.4.1 Monitoring Diversity -- 4.4.2 Vegetation -- 4.4.3 Ecological Processes -- 4.5 Gaps in the Assessment of Restoration Success in Mine Sites -- 4.6 Increasing Restoration Success by Enhancing Soil Biodiversity and Soil Multifunctionality -- 4.7 Using Keystone Species and Ecosystem Engineers in Restoration -- 4.7.1 Earthworms -- 4.7.2 Ants -- 4.7.3 Termites -- 4.7.4 Collembola and Mites -- 4.8 Conclusions and Further Perspective for the Restoration of Metalliferous Tailings -- References -- Chapter 5 Ecological Engineering and Green Infrastructure in Mitigating Emerging Urban Environmental Threats -- 5.1 Dimensions of Ecological Engineering in the Frame of Ecosystem Service Provision -- 5.2 Landfill Afteruse Practices Based on Ecological Engineering and Green Infrastructure -- 5.2.1 Old Landfill Closure and Rehabilitation Procedures -- 5.2.2 Landfill Restoration Examples Around the World -- 5.2.2.1 Conventional Landfill Closure (Campulung, Romania) -- 5.2.2.2 Elbauenpark Including Am Cracauer Anger Landfill (Magdeburg, Germany) -- 5.2.2.3 World Cup Park (Nanjido Landfill, Seoul, South Korea) -- 5.2.2.4 Fudekeng Environmental Restoration Park (Taiwan) -- 5.2.2.5 Hong Kong -- 5.2.2.6 Hyria Landfill Site (Tel Aviv, Israel) -- 5.2.2.7 Valdemingomez Forest Park (Madrid, Spain) -- 5.2.2.8 Freshkills Park - A Mega Restoration Project in the US -- 5.3 Role of Ecological Engineering in Transforming Brownfields into Greenfields -- 5.3.1 UGI Options for Brownfield Recycling -- 5.3.2 Pilot Case: Restoration of a Brownfield to Provide ES - Albert Railway Station (Dresden, Germany) Transformation into the Weißeritz Greenbelt -- 5.4 Green Infrastructures for Mitigating Urban Transport-Induced Threats -- 5.4.1 Transportation Heritage from the Industrial Period. , 5.4.2 The Cases of the Rose Kennedy Greenway and Cheonggyecheon River Restoration -- 5.4.2.1 The Concept: Expressway-to-Greenway Conversion -- 5.4.2.2 Environmental Efficiency and Effectiveness -- 5.4.2.3 Social Impact -- 5.4.2.4 Economic Efficiency -- 5.5 Conclusions -- References -- Chapter 6 Urban Environmental Issues and Mitigation by Applying Ecological and Ecosystem Engineering -- 6.1 Urbanization -- 6.2 Global Trends of Urbanization and Its Consequences -- 6.3 Urban Environmental Issues -- 6.3.1 Physical Urban Environmental Issues -- 6.3.1.1 Urban Heat Islands -- 6.3.1.2 Urban Flooding -- 6.3.1.3 Urban Pollution (Air, Water, Noise) and Waste Management -- 6.3.2 Biological Urban Environmental Issues -- 6.3.2.1 Declining Urban Ecosystem Services Due to Loss of Biodiversity -- 6.3.2.2 Increasing Disease Epidemiology -- 6.4 Ecosystem Engineering -- 6.5 Approaches for Mitigation of Urban Environmental Issues -- 6.5.1 Nature-Based Solutions -- 6.5.1.1 Green Infrastructure (GI) -- 6.5.1.2 Urban Wetlands and Riparian Forests -- 6.5.1.3 Solar Energy -- 6.5.2 Artificial Engineering Approaches -- 6.5.3 Landfill Gas as an Alternative Source of Energy: Waste to Wealth -- 6.5.3.1 Wastewater/Sewage Treatment Plants as Sources of Energy -- 6.5.3.2 Rainwater Harvesting -- 6.5.3.3 Constructed Floating Islands for Water Treatment -- 6.5.3.4 Microgrids -- 6.6 Future Perspective -- Acknowledgments -- References -- Chapter 7 Soil Fertility Restoration, Theory and Practice -- 7.1 Introduction -- 7.2 Materials and Methods -- 7.3 Results -- 7.4 Discussion and Conclusions -- Acknowledgment -- References -- Chapter 8 Extracellular Soil Enzymes Act as Moderators to Restore Carbon in Soil Habitats -- 8.1 Introduction -- 8.2 Soil Organic Matter (SOM) -- 8.3 Soil Organic Carbon (SOC) -- 8.4 Soil Carbon Sequestration -- 8.5 Extracellular Soil Enzymes. , 8.6 Interactive Role of Extracellular Soil Enzymes in Soil Carbon Transformation -- 8.6.1 Cellulase -- 8.6.2 -Glucosidase -- 8.6.3 Invertase -- 8.6.4 Amylase -- 8.6.5 Xylanase -- 8.7 Conclusion -- References -- Chapter 9 Ecological Engineering for Solid Waste Segregation, Reduction, and Resource Recovery - A Contextual Analysis in Brazil -- 9.1 Introduction -- 9.2 Municipal Solid Waste in Brazil -- 9.3 Compostable Waste -- 9.4 Anaerobic Digestion -- 9.5 Recycling -- 9.6 Burning Waste Tires -- 9.7 Energy Recovery -- 9.8 Coprocessing Industrial Waste in Cement Kilns -- References -- Chapter 10 Urban Floods and Mitigation by Applying Ecological and Ecosystem Engineering -- 10.1 Sustainable Ecosystems through Engineering Approaches -- 10.2 Flooding and, Specifically, Urban Flooding as a Problem of Interest -- 10.3 Causes and Impacts of Urban Flooding -- 10.4 Protection Against and Mitigation of Urban Flooding in the Context of Sustainability -- 10.4.1 Living with Floods as a Sustainable Approach -- 10.4.2 Urban Flood Risk Management -- 10.4.3 Integrated and Interactive Flood Management -- 10.4.4 Structural and Nonstructural Measures for Flood Control -- 10.4.5 River and Wetland Restoration -- 10.4.6 Low Impact Development (LID) and Best Management Practices (BMPs) -- 10.5 Conclusions and Future Scope -- References -- Chapter 11 Ecological Engineering and Restoration of Mine Ecosystems -- 11.1 Background and Definitions -- 11.2 Ecological Criteria for Successful Mine Site Restoration -- 11.3 Examples of Reclamation Technology and Afforestation in Mining Areas -- 11.4 Selected Reclamation Practices Versus Mining Extraction and Environmental Conditions -- 11.5 Final Comments and Remarks -- References -- Chapter 12 Ecological Restoration of Abandoned Mine Land: Theory to Practice -- 12.1 Introduction. , 12.2 Integration of Ecology Theory, Restoration Ecology, and Ecological Restoration -- 12.2.1 Disturbance -- 12.2.2 Succession -- 12.2.3 Fragmentation -- 12.2.4 Ecosystem Functions -- 12.2.5 Restoration -- 12.2.6 Reclamation -- 12.2.7 Rehabilitation -- 12.2.8 Regeneration -- 12.2.9 Recovery -- 12.3 Restoration Planning -- 12.4 Components of Restoration -- 12.4.1 Natural Processes -- 12.4.2 Physical and Nutritional Constraints -- 12.4.3 Species Diversity -- 12.5 Afforestation of Mine-Degraded Land -- 12.5.1 Miyawaki Planting Methods -- 12.6 Methods of Evaluating Ecological Restoration Success -- 12.6.1 Criteria for Restoration Success -- 12.6.2 Indicator Parameters of a Restored Ecosystem -- 12.6.3 Soil Quality Index -- 12.7 Development of a Post-Mining Ecosystem: A Case Study in India -- 12.8 Conclusions and Future Research -- References -- Chapter 13 Wetland, Watershed, and Lake Restoration -- 13.1 Introduction -- 13.2 Renovation of Wastewater -- 13.2.1 Physical Methods -- 13.2.2 Chemical Methods -- 13.2.3 Biological Methods -- 13.2.4 Other Methods -- 13.3 Restoration of Bodies of Water -- 13.3.1 Watersheds -- 13.3.2 Wetlands -- 13.3.2.1 Methods of Restoring Wetlands -- 13.3.3 Rivers -- 13.3.4 Lakes -- 13.3.5 Streams -- 13.3.6 Case Studies -- 13.4 Problems Encountered in Restoration Projects -- 13.5 Conclusion -- References -- Chapter 14 Restoration of Riverine Health: An Ecohydrological Approach -Flow Regimes and Aquatic Biodiversity -- 14.1 Introduction -- 14.2 Habitat Ecology -- 14.2.1 Riverine Habitats -- 14.2.2 Linked Ecosystems -- 14.3 Riverine Issues -- 14.3.1 Bank Erosion, Siltation, and Aggradations of Rivers -- 14.3.2 Deforestation in Catchment Areas -- 14.3.3 River Pollution and Invasive Species -- 14.3.4 Fishing Pressure -- 14.3.5 Status of Wetlands (FPLs) -- 14.3.6 Regulated Rivers and Their Impacts. , 14.4 Ecorestoration of River Basins.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Environmental health. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (403 pages)
    Edition: 1st ed.
    ISBN: 9781119867357
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Section 1 Geochemistry and Health -- Chapter 1 Medical Geology: Biosphere, Geosphere, and Noosphere Interface -- 1.1 Introduction -- 1.2 Medical Geology in Russia and Newly Independent States (NIS) -- 1.2.1 Linking Geology to Soils - Minerals and HealthCare (Medicine) -- 1.3 Medicinal Value of Metals in Ancient Indian System of Medicine (After Charaka Samhita) -- 1.3.1 Parada (Mercury) -- 1.3.2 Swarna (Gold) Bhasma -- 1.3.3 Rajata (Silver) Bhasma -- 1.3.4 Tamra (Copper) Bhasma -- 1.3.5 Aayasa or Loha (Iron) -- 1.3.6 Mandura Bhasma -- 1.3.7 Naga/Sisaka (lead) Bhasma -- 1.3.8 Vanga/Trapu (tin) Bhasma -- 1.3.9 Pittala (Brass) -- 1.4 Linking Geology to Medicine? -- 1.5 Mineral-Enriched Yeast: Vehicles of Nutrition -- 1.6 Trace Elements/Functional Foods -- 1.6.1 Antidiabetic Plants - The Chromium Connection -- 1.6.2 Lithium -- 1.7 Public Health Informatics (PHI) -- 1.7.1 Medicinal-Mineral Resources -- 1.7.2 Balneotherapy -- 1.8 Use of Clay Minerals in Water Purification -- 1.9 Bathing in Radioactive Monazite-Rich Sands -- Glossary -- References -- Chapter 2 Biogeochemistry: Essential Link Between Geosphere and Biosphere -- 2.1 Introduction to Biogeochemistry -- 2.2 Geosphere: Formation, Evolution, and Isotopes -- 2.2.1 Evolution of the Geosphere -- 2.3 Biosphere -- 2.3.1 Evolution of the Biosphere -- 2.3.2 Bacteria: The Most Primitive Organisms on Earth -- 2.4 Natural Biogeochemistry Cycles (C, N, P, and S) -- 2.4.1 Carbon Cycle -- 2.4.2 Nitrogen Cycle -- 2.4.3 Phosphorous Cycle -- 2.4.4 Sulfur Cycle -- 2.5 Artificial Biogeochemistry Cycles -- 2.6 Soil Biogeochemistry -- 2.6.1 Introduction to Soil Biogeochemistry -- 2.6.2 Soil Formation and Evolution -- 2.6.3 Soil and Ecosystem Balancing. , 2.7 Impact of Natural and Anthropogenic Activities on Biogeochemical Processes -- 2.7.1 Landslide -- 2.7.2 Volcanic Eruptions -- 2.7.3 Industrial Activities -- 2.7.4 Intensive Agriculture -- 2.7.5 Greenhouse Gas Emissions -- 2.7.6 Ocean Acidification -- 2.8 Conclusion and Future Perspectives -- References -- Chapter 3 Geochemical Release and Environmental Interfaces -- 3.1 Introduction -- 3.1.1 Mineral Release -- 3.1.2 Gas Release -- 3.2 Environmental Interfaces -- 3.2.1 Atmospheric Aerosol Interface -- 3.2.2 Nanomaterial Interfaces -- 3.2.3 Effect of Geochemical Release on Environmental Interfaces -- 3.2.4 Benefits of Geochemical Releases on Environment -- References -- Section 2 Dust Storms and Health -- Chapter 4 Minerogenic Dust and Human Health -- 4.1 Introduction -- 4.2 Tree "Bark Pockets" as Pollution Time Capsules -- 4.3 Asbestosis -- 4.4 Phosphogypsum Dust (Anthropogenic Radioactivity) -- 4.5 Silicosis -- 4.6 Volcanic Ash -- 4.7 Dust and Gases from Volcanic Eruptions -- 4.8 Artisanal and Small-Scale Gold Mining Activities in Nigeria -- Acknowledgments -- References -- Chapter 5 Silicosis and Asbestosis -- 5.1 Introduction -- 5.2 Silicosis -- 5.2.1 Structure and Properties of Silica -- 5.2.2 Environmental Occurrence of Silica -- 5.2.3 Industrial Applications and Human Exposure to Silica -- 5.2.4 Silicosis and Its Pathologic Mechanisms -- 5.2.5 Prevention and Treatment of Silicosis -- 5.3 Asbestosis -- 5.3.1 Structure of Asbestos -- 5.3.2 Properties of Asbestos -- 5.3.3 Sources of Asbestos Fiber -- 5.4 Industrial Application -- 5.5 Exposure to Mineral Fiber -- 5.6 Disease Description and Mechanisms of Action -- 5.7 Prevention and Treatment Plans -- References -- Chapter 6 Radon and Health -- 6.1 Introduction -- 6.2 Radon Chemistry -- 6.3 Sources of Radon -- 6.4 Radon Measurement Units -- 6.5 Safe Radon Levels -- 6.6 Radon Detection Methods. , 6.7 Detection of Radon and Radon Decay Products by Grab Sampling Method -- 6.7.1 Ionization Chambers -- 6.7.2 Scintillation Cell Method -- 6.7.3 Liquid Scintillation Counting (LSC) -- 6.7.4 Gross Alpha Counting -- 6.7.5 Alpha Spectrometry -- 6.8 Detection of Radon and Radon Decay Products by Integrated Measurement Methods -- 6.8.1 Solid-State Nuclear Track Detector -- 6.8.2 Activated Carbon Method -- 6.8.3 Electret-Ionization Chamber (EIC) Method -- 6.8.4 Solid-State Detection Monitors -- 6.9 Detection of Radon and Radon Decay Products by Continuous Monitors -- 6.9.1 Continuous Scintillation Cell Monitor -- 6.9.2 Passive Continuous Radon Monitor -- 6.9.3 Continuous Radon Monitors for Radon Progeny -- 6.10 Health Effects of Radon -- 6.10.1 Lung Cancer -- 6.10.2 Leukemia -- 6.10.3 Skin Cancer -- 6.10.4 Circulatory System Diseases (CSDs) -- 6.11 Prevention and Mitigation of Radon in Indoor Settings -- 6.12 Conclusion -- References -- Section 3 Medical Geology of the Hydrosphere -- Chapter 7 Water-Rock Interactions: Mineral Dissolution -- 7.1 Introduction -- 7.2 Congruent (Simple) Dissolution -- 7.2.1 Simple Dissolution of Minerals in Groundwater System -- 7.2.2 Saturation Index -- 7.2.3 Chemical Evolution of Groundwater Controlled by Congruent Dissolution -- 7.3 Incongruent Dissolution -- 7.3.1 Incongruent Dissolution in Aquifer Systems -- 7.3.2 Weathering of Silicates -- 7.3.3 Consequence of Incongruent Dissolution of Silicates -- 7.4 Reductive Dissolution of Fe(III) Oxides -- 7.4.1 Fe(III) Oxide Mineral and Reductive Dissolution -- 7.4.2 Cause of Reductive Dissolution of Fe(III) Oxides -- 7.4.3 Consequence of Reductive Dissolution of Fe(III) Oxides -- 7.5 Conclusion Remarks -- Acknowledgments -- References -- Chapter 8 Water Hardness and Health -- 8.1 Water Hardness - Overview -- 8.2 Origin of Water Hardness. , 8.3 Water Hardness and Health Influence - Background -- 8.3.1 Cardiovascular Diseases and Water Hardness -- 8.3.2 Prevention Mechanism of CVD by Water Hardness -- 8.3.3 Kidney Disease and Water Hardness -- 8.3.4 Protective Competence of the Hard Water Against Cancer Development -- 8.3.5 Calcium and Magnesium Intake and Other Health Effects -- 8.3.6 Physiological Significance of Magnesium -- 8.3.7 Health Drawbacks of Water Hardness -- 8.4 Mitigation of Water Hardness -- 8.5 Conclusions -- References -- Chapter 9 Geochemistry of Fluoride in the Environment and Human Health -- 9.1 Introduction -- 9.2 Geochemistry of Fluoride -- 9.3 Fluoride in Rocks -- 9.4 Fluoride in Soil -- 9.5 Fluoride in Plants -- 9.6 Fluoride in Natural Water -- 9.7 Fluoride and Human Health -- 9.8 Conclusions -- Acknowledgments -- References -- Chapter 10 Iodine Essentiality for Human Health: Sources, Toxicity, Biogeochemistry, and Strategies for Alleviation of Iodine Deficiency Disorders -- 10.1 Introduction -- 10.2 Iodine Essentiality for Human Health -- 10.3 Role of Iodine in Thyroid Function -- 10.4 Iodine Sources in Biogeosphere and Hydrosphere -- 10.5 Iodine in Diets -- 10.6 Iodine in Watersheds -- 10.7 Iodine Deficiency Disorders -- 10.8 Biogeochemical Cycling of Iodine -- 10.9 Conclusions -- Acknowledgments -- References -- Chapter 11 Understanding Nexus Between Hydrogeochemical Cycling and Medical Geology of Arsenic -- 11.1 Introduction -- 11.2 What Is Medical Geology? -- 11.3 Arsenic Release Mechanisms -- 11.4 Exposure and Effects of As on Humans and Plants -- 11.5 Conclusions and Outlooks -- Acknowledgments -- References -- Chapter 12 Potentially Toxic Metals and Health -- 12.1 Introduction -- 12.2 Toxic Metals and Their Resources -- 12.2.1 Arsenic (As) -- 12.2.2 Cadmium (Cd) -- 12.2.3 Chromium (Cr) -- 12.2.4 Lead (Pb) -- 12.3 The Effects of Toxic Metals on Human Health. , 12.4 Toxic Metal Removal with Biochar Adsorption -- 12.5 Conclusions and Recommendations -- References -- Section 4 Medical Pedology: Health Effects from Soils and Sediments -- Chapter 13 Dynamics of Trace Element Bioavailability in Soil: Agronomic Enhancement and Risk Assessment -- 13.1 Introduction -- 13.2 Bioavailability of Trace Elements in Contaminated Soils -- 13.3 Case Study -- 13.3.1 Experimental Design -- 13.3.2 Target Hazard Quotient -- 13.4 Uptake of Trace Elements: Change in Bioavailability -- 13.5 Trace Element Accumulation in Vegetable/Fodder -- 13.6 Human Health Risk Assessment -- 13.7 Conclusion -- References -- Chapter 14 Geochemical Provenance of Metalloids and Their Release: Implications on Medical Geology -- 14.1 Medical Geology of Metalloids -- 14.2 Role of Natural Geologic Materials and Processes on Releasing of Metalloids to the Environment -- 14.2.1 Release to Hydrosphere -- 14.2.2 Release to Lithosphere -- 14.2.3 Release to Atmosphere -- 14.2.4 Mechanism of the Release of the Metalloids to the Environment -- 14.3 Bioavailability and Bioaccessibility of Metalloids -- 14.3.1 Soil -- 14.3.2 Aquatic Environment -- 14.3.3 Atmosphere -- 14.4 Human Exposure of Metalloids -- 14.5 Toxicity of Metalloids to Human and Prevention -- 14.6 The Risk Management Strategies to Reduce the Bioavailable of Metalloids in the Environment -- 14.6.1 Remediation of Metalloids from the Water Bodies -- 14.6.2 Remediation of Metalloids from the Soil Matrices -- 14.7 Summary and Future Development -- References -- Chapter 15 Cobalt and Copper Deficiency and Molybdenosis -- 15.1 Introduction -- 15.2 Role of Co, Cu, and Mo as Micronutrients -- 15.2.1 Role of Cu as a Micronutrient in Plants -- 15.2.2 Role of Cu as a Micronutrient in Animals -- 15.2.3 Role of Co as a Micronutrient in Plants -- 15.2.4 Role of Co as a Micronutrient in Animals. , 15.2.5 Co and Cu Micro-Deficiency.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Natural resources-Management. ; Natural resources-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (465 pages)
    Edition: 1st ed.
    ISBN: 9780323952798
    DDC: 333.7
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (253 pages)
    Edition: 1st ed.
    ISBN: 9783031181658
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 333.91
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Microplastics-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (531 pages)
    Edition: 1st ed.
    ISBN: 9781119879527
    DDC: 363.738
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Section I Single Use Plastics -- Chapter 1 Scientometric Analysis of Microplastics across the Globe -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.3 Results and Discussion -- 1.3.1 Trends in Scientific Production and Citations -- 1.3.2 Top Funding Agencies -- 1.3.3 Top 10 Global Affiliations -- 1.3.4 Top Countries -- 1.3.5 Top 10 Databases and Journals -- 1.3.6 Top 10 Published Articles -- 1.3.7 Top 10 Author Keywords and Research Areas -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Microplastic Pollution in the Polar Oceans - A Review -- 2.1 Introduction -- 2.1.1 Plastics -- 2.1.2 Plastic Pollution -- 2.1.3 Microplastics -- 2.1.4 Importance of Microplastic Pollution in the Polar Oceans -- 2.2 Polar Regions -- 2.2.1 General -- 2.2.2 Sea Ice -- 2.2.3 Water -- 2.2.4 Sediments -- 2.2.5 Biota -- 2.3 Future Perspectives -- 2.4 Conclusions -- References -- Chapter 3 Microplastics - Global Scenario -- 3.1 Introduction -- 3.2 Environmental Issues of Plastic Waste -- 3.3 Coprocessing of Plastic Waste in Cement Kilns -- 3.3.1 Cost of Plants to Convert Plastic Waste to Refused-Derived Fuel (RDF) -- 3.4 Disposal of Plastic Waste Through Plasma Pyrolysis Technology (PPT) -- 3.4.1 Merits of PPT -- 3.5 Constraints on the Use of Plastic Waste Disposal Technologies -- 3.6 Alternate to Conventional Petro-based Plastic Carry Bags and Films -- 3.7 Improving Waste Management -- 3.7.1 Phasing Out Microplastics -- 3.7.2 Promoting Research into Alternatives -- 3.7.3 Actions and Resolutions -- References -- Chapter 4 The Single-Use Plastic Pandemic in the COVID-19 Era -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Data Sources -- 4.2.2 Estimation of the General population's Daily Use of Face Masks. , 4.2.3 Estimation of the Daily Amount of Medical Waste in Hospitals -- 4.3 Trends in Production and Consumption of SUPs during the Pandemic -- 4.3.1 Personal Protective Equipment -- 4.3.2 Packaging SUPs -- 4.3.2.1 Trends in Plastic Waste Generation, Management, and Environmental Fate during the COVID-19 Era -- 4.4 SUP Waste from the Pandemic -- 4.4.1 Environmental Impacts from SUP Waste -- 4.4.2 Management of SUP Waste -- 4.5 Conclusions and Future Prospects -- References -- Section II Microplastics in the Aerosphere -- Chapter 5 Atmospheric Microplastic Transport -- 5.1 The Phenomenon of Microplastic Transport -- 5.2 Factors Affecting Microplastic Transport -- 5.2.1 Types of MPs -- 5.2.2 Characteristics and Sources of Microplastics Emitters -- 5.2.3 Meteorological Conditions -- 5.2.4 Altitude and Surface Roughness -- 5.2.5 Microplastic Deposition Processes in the Ocean -- 5.2.6 Microplastics Deposition Processes in the Air -- 5.3 Microplastic Transport Modelling -- 5.3.1 Eulerian Method -- 5.3.2 Lagrangian Method -- References -- Chapter 6 Microplastics in the Atmosphere and Their Human and Eco Risks -- 6.1 Introduction -- 6.2 Microplastics in the Atmosphere -- 6.2.1 Size, Shapes, and Colours -- 6.2.2 Chemical Composition -- 6.2.3 Sources of Microplastics -- 6.2.4 Spatial Distribution and Rate of Deposition -- 6.2.5 Effects of Climatic Conditions on MP Distribution -- 6.2.6 Transport Pathways -- 6.2.7 Pollutants Associated with MPs -- 6.3 Impact of Microplastics on Human Health and the Eco Risk -- 6.3.1 Impact on Human Health -- 6.3.2 Eco Risk -- 6.4 Strategies to Minimise Atmospheric MPs through Future Research -- 6.5 Conclusion -- Acknowledgements -- References -- Chapter 7 Sampling and Detection of Microplastics in the Atmosphere -- 7.1 Introduction -- 7.2 Classification -- 7.3 Sampling Microplastics -- 7.3.1 Sampling Airborne Microplastics. , 7.3.2 Sediment -- 7.3.3 Water -- 7.3.4 Biota -- 7.4 Sample Preparation -- 7.5 Detection and Characterisation of MPs in the Atmosphere -- 7.5.1 Microscopic Techniques for Detecting MPs -- 7.5.1.1 Stereomicroscopy -- 7.5.1.2 Fluorescence Microscopy -- 7.5.1.3 Polarised Optical Microscopy (POM) -- 7.5.1.4 Scanning Electron Microscopy (SEM) -- 7.5.1.5 Atomic Force Microscopy (AFM) -- 7.5.1.6 Hot Needle Technique -- 7.5.1.7 Digital Holography -- 7.5.2 Spectroscopic Techniques for Analysing MPs -- 7.5.2.1 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.5.2.2 Raman Spectroscopy -- 7.5.3 Thermal Analysis -- 7.5.3.1 Differential Scanning Calorimetry (DSC) -- 7.5.3.2 Thermogravimetric Analysis (TGA) -- 7.5.3.3 Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) -- 7.6 Conclusion -- Funding -- References -- Chapter 8 Sources and Circulation of Microplastics in the Aerosphere - Atmospheric Transport of Microplastics -- 8.1 Introduction -- 8.1.1 Occurrence and Abundance of Atmospheric MP -- 8.1.2 Plastic Polymers and Their Properties -- 8.1.3 Sources and Pathways of MPs in the Atmosphere -- 8.2 Temporal and Spatial Trends in MP Accumulation -- 8.2.1 Roadside MPs -- 8.2.2 Agricultural Fields and Soil -- 8.2.3 Wastewater and Sludge -- 8.2.4 Ocean/Marine Debris -- 8.3 Formation of MPs -- 8.3.1 Physical Weathering -- 8.3.2 Chemical Weathering -- 8.3.3 Biodegradation -- 8.3.4 Photo-thermal Oxidation -- 8.3.5 Thermal Degradation -- 8.4 Atmospheric Circulation, Transport, Suspension, and Deposition -- 8.4.1 Wet Deposition -- 8.4.2 Dry Deposition -- 8.4.3 Urban Dust -- 8.4.4 Suspended Atmospheric MPs -- 8.5 Atmospheric Chemistry of MPs -- 8.6 Predicting MP Dispersion and Transport -- 8.7 Eco-Environmental Impacts -- 8.7.1 Impacts on Human and Wildlife Health -- 8.7.2 Impacts on the Climate -- 8.8 Future Perspectives -- References. , Section III Microplastics in the Aquatic Environment -- Chapter 9 Interaction of Chemical Contaminants with Microplastics -- 9.1 Introduction -- 9.2 Interactions -- 9.3 Mechanisms -- 9.3.1 Interactions between Organic Contaminants and Microplastics -- 9.3.2 Interactions between Heavy Metals and Microplastics -- 9.3.3 Kinetics of the Sorption Process -- 9.3.4 Pseudo-First-Order Model -- 9.3.5 Pseudo-Second-Order Model -- 9.3.6 Intraparticle Diffusion Model -- 9.3.7 Film Diffusion Model -- 9.3.8 Isotherm Models -- 9.3.9 Langmuir Model -- 9.3.10 Freundlich Model -- 9.4 Environmental Burden of Microplastics -- 9.5 Future Approaches -- References -- Chapter 10 Microplastics in Freshwater Environments -- 10.1 Introduction -- 10.2 Microplastics in Rivers and Tributaries -- 10.3 Microplastics in Lakes -- 10.4 Microplastics in Groundwater Sources -- 10.5 Microplastics in Glaciers and Ice Caps -- 10.6 Microplastics in Deltas -- 10.7 Conclusion -- Acknowledgment -- References -- Chapter 11 Microplastics in Landfill Leachate: Flow and Transport -- 11.1 Plastics and Microplastics -- 11.2 Microplastics in Landfill Leachate -- 11.3 Summary -- Acknowledgments -- References -- Chapter 12 Microplastics in the Aquatic Environment - Effects on Ocean Carbon Sequestration and Sustenance of Marine Life -- 12.1 Introduction -- 12.2 Microplastics in the Aquatic Environment -- 12.2.1 Major Sources -- 12.2.2 Chemical Nature and Distribution Processes -- 12.2.2.1 Chemical Nature -- 12.2.2.2 Distribution Processes -- 12.3 Microplastics and Ocean Carbon Sequestration -- 12.3.1 Ocean Carbon Sequestration -- 12.3.2 Effect of Microplastics on Ocean Carbon Sequestration -- 12.3.2.1 Effect on Phytoplankton Photosynthesis and Growth -- 12.3.2.2 Effect on Zooplankton Development and Reproduction -- 12.3.2.3 Effect on the Marine Biological Pump -- 12.4 Microplastics and Marine Fauna. , 12.4.1 Effects on Corals -- 12.4.2 Effects on Fisheries and Aquaculture -- 12.4.2.1 Shrimp -- 12.4.2.2 Oysters and Mussels -- 12.4.2.3 Fish -- 12.4.3 Effects on Sea Turtles and Sea Birds -- 12.4.4 Effects on Marine Mammals -- 12.5 Microplastic Pollution, Climate Change, and Antibiotic Resistance - A Unique Trio -- 12.6 Conclusion and Future Perspectives -- Acknowledgments -- References -- Section IV Microplastics in Soil Systems -- Chapter 13 Entry of Microplastics into Agroecosystems: A Serious Threat to Food Security and Human Health -- 13.1 Introduction -- 13.2 Sources of Microplastics in Agroecosystems -- 13.2.1 Plastic Mulching -- 13.2.2 Plastic Use in Modern Agriculture -- 13.2.3 Application of Sewage Sludge/Biosolids -- 13.2.4 Compost and Fertilizers -- 13.2.5 Wastewater Irrigation -- 13.2.6 Landfill Sites -- 13.2.7 Atmospheric Deposition -- 13.2.8 Miscellaneous Sources -- 13.3 Implications of Microplastic Contamination on Agroecosystems -- 13.3.1 Implications for Soil Character -- 13.3.2 Implications for Crop Plants and Food Security -- 13.4 Human Health Risks -- 13.5 Knowledge Gaps -- 13.6 Conclusion and Future Recommendations -- Acknowledgments -- References -- Chapter 14 Migration of Microplastic-Bound Contaminants to Soil and Their Effects -- 14.1 Introduction -- 14.2 Microplastics as Sorbing Materials for Hazardous Chemicals -- 14.3 Types of Microplastic-Bound Contaminants in Soils -- 14.3.1 Heavy Metals and Metalloids - Inorganic Contaminants Adsorbed to MPs -- 14.3.2 Persistent Organic Pollutants, Pharmaceuticals, Antibiotics, Pesticides, and Other Organic Contaminants Adsorbed to MPs -- 14.4 Effects of Exposure and Co-exposure in Soil - Consequences of Contaminant Sorption for MP Toxicity and Bioaccumulation -- 14.5 Microplastic-Bound Contaminants in Soils as Potential Threats to Human Health -- 14.6 Conclusions -- References. , Chapter 15 Plastic Mulch-Derived Microplastics in Agricultural Soil Systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Water-Microbiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (530 pages)
    Edition: 1st ed.
    ISBN: 9780128187845
    DDC: 576.19200000000001
    Language: English
    Note: Front Cover -- Waterborne Pathogens -- Waterborne Pathogens -- Copyright -- Contents -- Contributors -- About the editors -- Professional experience -- Academic honors -- Visiting assignments in various universities-widely traveled -- Preface -- Acknowledgments -- 1 - Emerging waterborne pathogens in the context of climate change: Vibrio cholerae as a case study -- 1. Introduction -- 2. Vibrio cholerae and its environmental reservoir -- 3. Attachment -- 4. Viability of the bacterium through the interepidemic period -- 5. Cyanobacterial reservoir and the seasonality of cholera: the Bangladesh model -- 6. Transmission of cholera during epidemics -- 7. Impact of climate on cholera -- 8. Conclusion -- References -- 2 - Ubiquitous waterborne pathogens -- 1. Introduction -- 2. Waterborne pathogens -- 2.1 Waterborne bacteria -- 2.1.1 The genus Vibrio -- 2.1.2 The genus Salmonella -- 2.1.3 The genus Shigella -- 2.1.4 The genus Escherichia -- 2.1.5 The genus Burkholderia -- 2.1.6 The genus Campylobacter -- 2.1.7 The genus Francisella -- 2.1.8 The genus Legionella -- 2.1.9 Mycobacterium avium complex -- 2.2 Waterborne viruses -- 2.2.1 Adenoviruses -- 2.2.2 Astroviruses -- 2.2.3 Caliciviruses -- 2.2.4 Noroviruses -- 2.2.5 Sapoviruses -- 2.2.6 Enteroviruses -- 2.2.7 Hepatovirus A -- 2.2.8 Hepatovirus E -- 2.2.9 Rotaviruses -- 2.3 Waterborne protozoa -- 2.3.1 The genus Cryptosporidium -- 2.3.2 The genus Giardia -- 2.3.3 Entamoeba histolytica -- 2.4 Waterborne helminths -- 2.4.1 The genus Dracunculus -- 2.4.2 The genus Fasciola -- 3. Potential waterborne pathogens -- 3.1 Potential waterborne bacteria -- 3.1.1 Helicobacter pylori -- 3.1.2 Aeromonas hydrophila -- 3.1.3 The genus Leptospira -- 3.1.4 The genus Tsukamurella -- 3.1.5 The genus Bacillus -- 3.1.6 Cyanobacteria and cyanotoxins -- 3.2 Potential waterborne viruses -- 3.3 Potential waterborne protozoa. , 3.3.1 Microsporidia -- 3.3.2 Cystoisospora belli -- 3.3.3 Cyclospora cayetanensis -- 3.4 Potential waterborne helminths -- 3.4.1 The genus Schistosoma -- 4. Summary -- Acknowledgment -- References -- 3 - Waterborne pathogens: review of outbreaks in developing nations -- 1. Introduction -- 2. Waterborne pathogen outbreaks in developing countries -- 3. WASH and waterborne disease outbreaks -- 4. Water quality: contribution to disease -- 5. Groundwater quality -- 6. Intervention efforts -- 7. Conclusion -- References -- 4 - Treatment of waterborne pathogens by reverse osmosis -- 1. Treatment of waterborne pathogens by reverse osmosis -- 1.1 Types of waterborne pathogens -- 1.2 Pathogen control in drinking water -- 1.3 Reverse osmosis -- 1.3.1 Basic terms and definition -- 1.3.1.1 Basic requirements for membrane materials -- 1.3.1.2 Pretreatment -- 1.3.1.3 Configuration of the reverse osmosis process -- 1.3.1.4 Membrane -- 1.3.1.5 Materials used for membrane -- 1.4 Removals of waterborne by reverse osmosis -- 2. Conclusion -- References -- 5 - Treatment of waterborne pathogens by microfiltration -- 1. Treatment of waterborne pathogens by microfiltration -- 1.1 Overview of waterborne pathogens -- 1.2 Microfiltration versus conventional filtration -- 1.2.1 Advantages and disadvantages of conventional filtration for waterborne pathogens removal -- 1.3 Microfiltration -- 1.3.1 Mass transport in the microfiltration process -- 1.4 Waterborne pathogens removal by microfiltration -- 2. Summary and conclusions -- References -- 6 - Filtration and chemical treatment of waterborne pathogens -- 1. Introduction -- 2. Waterborne pathogens and types of diseases -- 3. Source and transmission of waterborne pathogens -- 4. Filtration and chemical treatment -- 4.1 Filtration methods for treatment of pathogens -- 4.1.1 Household and small-scale water treatment. , 4.1.2 Drinking water treatment in plants/industries -- 4.1.3 Wastewater treatment in plant/industries -- 4.2 Chemical methods for treatment of pathogens -- 4.2.1 Chemical pretreatment -- 4.2.2 Chemical coagulation -- 4.2.3 Chemical disinfection -- 5. Conclusions and future scope -- References -- 7 - Biofiltration technique for removal of waterborne pathogens -- 1. Introduction -- 2. Waterborne disease -- 2.1 Log removal -- 2.2 Turbidity -- 3. Biofiltration -- 3.1 Trickling filter -- 3.2 Slow sand ltration -- 3.3 Rapid sand filter -- 3.4 Stormwater biofilter -- 3.4.1 Submerged zone -- 3.4.2 Removal of pathogenic bacteria in stormwater biofilter -- 3.5 Biofilter design consideration for removal of microbial contaminants -- 3.5.1 Filter media -- 3.5.2 Amendments of filter media -- 3.5.3 Surface modification of filter media -- 3.5.4 Biofilm -- 3.5.5 Infauna -- 3.5.6 Vegetation -- 3.6 Microbial-earthworm ecofilters -- 4. Conclusion -- References -- 8 - Thermal methods, ultraviolet radiation, and ultrasonic waves for the treatment of waterborne pathogens -- 1. Introduction -- 2. Thermal methods -- 3. The application of ultraviolet radiation -- 3.1 Basis of the process -- 3.2 The intensity of radiation and its dose -- 3.3 The required ultraviolet dose -- 3.4 Ultraviolet reactors -- 4. The application of solar disinfection -- 4.1 The basis of the process -- 4.2 Inactivation of microbes -- 4.3 The factors affecting the effectiveness of the process -- 4.4 Technological solutions -- 5. The application of ultrasonic waves -- 6. Summary -- References -- 9 - Heat, solar pasteurization, and ultraviolet radiation treatment for removal of waterborne pathogens -- 1. Introduction -- 2. Heat treatment -- 2.1 Critical temperature and efficacy of boiling -- 2.2 Advantages and disadvantages -- 2.3 Combination with other techniques -- 3. Solar pasteurization. , 3.1 Batch system -- 3.2 Continuous flow-through system -- 4. Ultraviolet radiation -- 4.1 Electromagnetic spectrum of ultraviolet light and microbial inactivation -- 4.2 Ultraviolet disinfection instrument -- 4.2.1 Mercury-based ultraviolet lamps -- 4.2.2 Mercury-free ultraviolet lamps -- 4.3 Factors affecting ultraviolet disinfection -- 4.4 Advantages and disadvantages -- 5. Future scope -- 6. Conclusion -- References -- 10 - Bioaugmentation for the treatment of waterborne pathogen contamination water -- 1. Introduction -- 2. Biological control of Legionella pneumophila-a most tracked waterborne pathogens in man-made water systems -- 2.1 Selection of anti-Legionella compounds producers -- 2.2 Biological molecules showing anti-Legionella activity -- 3. Antagonistic microbial strains as biological pesticides for lethal pathogenic microbes -- 3.1 Microbial consortium for optimum pollutant and pathogen removal -- 4. Bacteriophage for pathogen reduction in wastewater -- 4.1 Role of phage to control waterborne bacterial pathogens -- 4.2 Phage in wastewater treatment -- 5. Pathogen bacteria removal in constructed wetlands -- 5.1 Selection of antagonistic bacteria for removal of waterborne pathogens -- 6. Conclusion -- References -- Further reading -- 11 - Chemical treatment for removal of waterborne pathogens -- 1. Introduction -- 2. Regulated chemicals -- 3. Water treatment plants and its significance -- 3.1 The disinfection of drinking water -- 3.2 General overview of the water treatment -- 4. Raw water quality and disinfectant demand -- 5. Microbiological deliberation for disinfection and indicator organism -- 6. Conventional method of treatment -- 6.1 Physical and chemical treatments -- 6.2 Particulates aggregates and residuals -- 6.3 Chlorine -- 6.4 Effectiveness of chlorination on protozoa, bacteria, and virus and residues. , 6.5 Chloramine-based disinfection -- 6.6 Effectiveness and by-product of chloramine -- 6.7 Chlorine dioxide and effectiveness -- 6.8 Ozone -- 6.9 Ultraviolet disinfection -- 6.10 Human health and ecological effect -- 7. Conclusion -- References -- Further reading -- 12 - Molecular tools for the detection of waterborne pathogens -- 1. Introduction -- 2. Commonly encountered pathogens in water -- 2.1 Bacteria -- 2.2 Protozoa -- 2.3 Virus -- 3. Major types of detection platforms for the detection of waterborne pathogens -- 3.1 Luminescent molecular markers -- 3.2 Polymerase chain reaction-based molecular tools -- 3.3 Electrochemical sensors -- 3.4 Enzyme-linked immunosorbent assay -- 3.5 Magnetic biosensors -- 3.6 Designer "lab-on-a-chip" biosensor -- 3.7 Smartphone-based rapid monitoring system -- 4. Sensors and molecular tools in waterborne pathogens detection: where do we stand today? -- 4.1 Benefits -- 4.2 Limitations -- 4.3 Future prospects -- 5. Conclusion -- References -- Further reading -- 13 - Biosensors/molecular tools for detection of waterborne pathogens -- 1. Biosensors -- 1.1 Types of biosensors -- 1.1.1 Optical biosensors -- 1.1.1.1 Surface plasmon resonance biosensors -- 1.1.1.2 Evanescent field-based fiber optic biosensors -- 1.1.1.3 Fluorescence and chemiluminescence biosensors -- 1.1.1.4 Colorimetric biosensors -- 1.1.2 Piezoelectric biosensors (acoustic wave-based biosensors/mass sensitive detectors) -- 1.1.3 Electrochemical biosensors -- 2. Molecular methods -- 2.1 Different molecular methods of pathogen detection -- 2.1.1 Polymerase chain reaction and variants -- 2.1.1.1 Multiplex PCR and real-time PCR -- 2.1.2 Oligonucleotide DNA microarrays -- 2.1.3 Next-generation sequencing -- 2.1.4 Pyrosequencing -- 2.1.5 Fluorescence in situ hybridization -- 2.1.6 Immunology-based methods -- 3. Conclusion -- References. , 14 - Drug and multidrug resistance in waterborne pathogens.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Water. ; Hydrology. ; Energy policy. ; Energy and state. ; Environmental management. ; Sustainability. ; Refuse and refuse disposal. ; Kreislaufwirtschaft ; Wasserwirtschaft ; Wasserreserve ; Abwasser
    Description / Table of Contents: Water as key resource in Circular Economy -- Impact Of Climate Change on Water Status: Challenges and Emerging Solutions -- Integrated Water Management - Directions of Activities and Policies -- Circular Water Management in Smart Cities -- The Influence of Mineral Parameters on the Geochemistry of Heavy Metals in Bottom Sediments -- Sustainable Water Use in Agriculture - Circular Economy Approach -- Innovative Solutions in the Transition to Circular Economy in Water Sector -- Advanced Treatment Technologies in Removal of Pollutants from Water and Wastewater -- The Role of Water Recycling in Building a Circular Economy in the Textile Industry -- The Role of Water Recycling in Building a Circular Economy in the Textile Industry -- Preliminary Microbiological Risk Assessment for Local Water Reuse in a Small MBR Waste Water Treatment Plant -- Can Remote Sensing be a Useful Tool to Increase Water Reuse in Agriculture? -- Nutrients Recovery in Water and Wastewater Sector -- Technologies for Nutrient Recovery From Municipal Wastewater -- Circular Economy in Domestic and Industrial Waste Waters: Challenges and Opportunities -- Monitoring of Circular Economy Implementation in Water Sector -- Water Footprint of Business and Circular Economy -- Economic, Social and Environmental Dimensions in the Circular Economy (CE) Monitoring Framework in Water and Wastewater Sector -- Circular Economy Indicators and Measures in Water and Wastewater Sector – Case Study -- Business Opportunities in Water and Wastewater Sector as a Part of the Resolve Framework -- Circular Economy Implementation in the Water Sector: Wastewater Treatment Plant Tychy-Urbanowice Case Study -- Wastewater-Based Circular Economy Operations in East Kolkata Wetlands (The Largest Ramasar Site in South Asia), India.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(IX, 254 p. 106 illus., 81 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031181658
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...