GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 1
    Publication Date: 2023-06-21
    Description: Groundwater abstraction and drainage are considered to be the main drivers for the salinization of low‐lying coastal groundwater systems, while the role of past boundary conditions is less clear. In this study, 3‐D paleo‐hydrogeological variable‐density groundwater flow and salt transport modeling (“paleo‐modeling”) is applied to reconstruct the evolution of groundwater salinities during the Holocene, that is, the last 9,000 years, in Northwestern Germany. Novel aspects of this study include the consideration of highly resolved time‐variant boundary conditions in a 3‐D paleo‐modeling framework, for example, sea‐level rise, surface elevation and coastline changes, development of drainage networks and groundwater abstraction, as well as the quantification of isolated processes impacting salinization. Results show that salinization was a function of sea‐level rise from 9000 BP until 1300 CE. The creation of the dike line ∼1300 CE set the starting point for increasing anthropogenic control of the hydro(geo)logical system: changes in surface elevation and drainage of low‐lying marshes have become main drivers for salinization after 1600 CE when peat was artificially degenerated. Moreover, changes in the dike line caused by storm floods impacted the salinities. Model results for 2020 CE match well with present‐day salinity observations. Yet, salinization will continue in the future, as the hydro(geo)logical system has not reached an equilibrium. The presented paleo‐modeling framework can be viewed as a blueprint for similar low‐lying coastal groundwater systems, influenced by marine transgression and human development. Thereby, it enables the reconstruction of meaningful present‐day salinity distributions, serving as a vital basis for modeling future groundwater systems in a changing climate.
    Description: Key Points: Salinization of a low‐lying coastal groundwater system during the Holocene, that is, 9000 BP until present‐day, was investigated. Sea‐level rise and the evolution of paleogeography were major controls on groundwater salinization during most of the time. Surface elevation changes due to land cultivation, as well as the development of drainage networks, control salinization since ∼1600 CE.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.5281/zenodo.7633381
    Keywords: ddc:551.49 ; saltwater intrusion ; variable‐density groundwater flow ; salt transport ; sea‐level rise ; parameter estimation ; iMOD‐WQ
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-10
    Description: For millennia humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is, therefore, complicated by both natural and human-driven environmental changes at the land-sea interface. In particular, ongoing sea level rise, warming and deoxygenation might exacerbate such perturbations. In this context, an improved understanding of the nature and variability of groundwater fluxes across the land-sea continuum is timely, yet remains out of reach. The flow of terrestrial groundwater across the coastal transition zone as well as the extent of freshened groundwater below the present-day seafloor are receiving increased attention in marine and coastal sciences because they likely represent a significant, yet highly uncertain component of (bio)geochemical budgets, and because of the emerging interest in the potential use of offshore freshened groundwater as a resource. At the same time, “reverse” groundwater flux from offshore to onshore is of prevalent socio-economic interest as terrestrial groundwater resources are continuously pressured by overpumping and seawater intrusion in many coastal regions worldwide. An accurate assessment of the land-ocean connectivity through groundwater and its potential responses to future anthropogenic activities and climate change will require a multidisciplinary approach combining the expertise of geophysicists, hydrogeologists, (bio)geochemists and modellers. Such joint activities will lay the scientific basis for better understanding the role of groundwater in societal-relevant issues such as climate change, pollution and the environmental status of the coastal oceans within the framework of the United Nations Sustainable Development Goals. Here, we present our perspectives on future research directions to better understand land-ocean connectivity through groundwater, including the spatial distributions of the essential hydrogeological parameters, highlighting technical and scientific developments, and briefly discussing its societal relevance in rapidly changing coastal oceans.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: For millennia, humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is, therefore, complicated by both natural and human-driven environmental changes at the land-sea interface. In particular, ongoing sea level rise, warming and deoxygenation might exacerbate such perturbations. In this context, an improved understanding of the nature and variability of groundwater fluxes across the land-sea continuum is timely, yet remains out of reach. The flow of terrestrial groundwater across the coastal transition zone as well as the extent of freshened groundwater below the present-day seafloor are receiving increased attention in marine and coastal sciences because they likely represent a significant, yet highly uncertain component of (bio)geochemical budgets, and because of the emerging interest in the potential use of offshore freshened groundwater as a resource. At the same time, “reverse” groundwater flux from offshore to onshore is of prevalent socio-economic interest as terrestrial groundwater resources are continuously pressured by overpumping and seawater intrusion in many coastal regions worldwide. An accurate assessment of the land-ocean connectivity through groundwater and its potential responses to future anthropogenic activities and climate change will require a multidisciplinary approach combining the expertise of geophysicists, hydrogeologists, (bio)geochemists and modellers. Such joint activities will lay the scientific basis for better understanding the role of groundwater in societal-relevant issues such as climate change, pollution and the environmental status of the coastal oceans within the framework of the United Nations Sustainable Development Goals. Here, we present our perspectives on future research directions to better understand land-ocean connectivity through groundwater, including the spatial distributions of the essential hydrogeological parameters, highlighting technical and scientific developments, and briefly discussing its societal relevance in rapidly changing coastal oceans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-14
    Description: Subterranean estuaries are connective zones between inland aquifers and the open sea where terrestrial freshwater and circulating seawater mix and undergo major biogeochemical changes. They are biogeochemical reactors that modify groundwater chemistry prior to discharge into the sea. We propose that subterranean estuaries of high-energy beaches are particularly dynamic environments, where the effect of the dynamic boundary conditions propagates tens of meters into the subsurface, leading to strong spatio-temporal variability of geochemical conditions. We hypothesize that they form a unique habitat with an adapted microbial community unlike other typically more stable subsurface environments. So far, however, studies concerning subterranean estuaries of high-energy beaches have been rare and therefore their functioning, and their importance for coastal ecosystems, as well as for carbon, nutrient and trace element cycling, is little understood. We are addressing this knowledge gap within the interdisciplinary research project DynaDeep by studying the combined effect of surface (hydro- and morphodynamics) on subsurface processes (groundwater flow and transport, biogeochemical reactions, microbiology). A unique subterranean estuary observatory was established on the northern beach of the island of Spiekeroog facing the North Sea, serving as an exemplary high-energy research site and model system. It consists of fixed and permanent infrastructure such as a pole with measuring devices, multi-level groundwater wells and an electrode chain. This forms the base for autonomous measurements, regular repeated sampling, interdisciplinary field campaigns and experimental work, all of which are integrated via mathematical modelling to understand and quantify the functioning of the biogeochemical reactor. First results show that the DynaDeep observatory is collecting the intended spatially and temporally resolved morphological, sedimentological and biogeochemical data. Samples and data are further processed ex-situ and combined with experiments and modelling. Ultimately, DynaDeep aims at elucidating the global relevance of these common but overlooked environments.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...