GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Adaptation (Biology). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (201 pages)
    Edition: 1st ed.
    ISBN: 9783030712549
    Series Statement: Springer Series in Light Scattering Series
    DDC: 535.43
    Language: English
    Note: Intro -- Contents -- sqrtε Law: Centennial of the First Exact Result of Classical Radiative Transfer Theory -- 1 Introduction -- 2 Mathematical Prologue -- 2.1 The Green Function -- 2.2 Derivation of the sqrtε Law -- 3 Ancient History of sqrtε -- 3.1 Scattering Atmospheres -- 3.2 Milne-Eddington Model -- 3.3 Milne Equation -- 4 Resonance Radiation: Lévy Flights and sqrtε -- 4.1 Biberman-Holstein Equation -- 4.2 Transfer of Excitation in Scattering Media -- 4.3 Boundary Layer -- 4.4 Refinements -- 5 H-Functions, Fraunhafer Lines and sqrtε -- 5.1 Emergent Radiation. H-functions -- 5.2 Account for Continuum Absorption -- 6 Finite Layer: sqrtε and Scaling -- 6.1 Boundary Layers -- 6.2 Interior Solution -- 7 Methods of Derivation of the sqrtε Law -- 8 Polarization: Generalizations of the sqrtε Law -- 8.1 Second Solar Spectrum -- 8.2 Resonance Scattering. Vectors -- 8.3 Resonance Scattering. Matrices -- 8.4 Magnetic Field. Hanle Effect -- 9 Lévy Flights: Approximations Inspired by the sqrtε Law -- 9.1 An Illustration -- 9.2 Basic Approximation -- 9.3 Discussion -- 9.4 Notes -- 9.5 Finite Layer -- 10 Conclusion -- References -- Solar Heating of the Cryosphere: Snow and Ice Sheets -- 1 Introduction -- 2 Differential Models for Radiative Transfer in Light Scattering Media -- 2.1 Transport Approximation -- 2.2 The Simplest Differential Approximations -- 2.3 Propagation of Solar Radiation in Snow -- 2.4 Modified Solution for Refracting Host Medium -- 3 Computational Model for Combined Heat Transfer -- 4 Heating of a Snowpack by Solar Radiation -- 4.1 Spectral Optical Properties of Pure Snow -- 5 Effect of Snow Pollution on Radiative Heating of Snowpack -- 5.1 Internal Versus External Mixture of Soot -- 6 Solar Heating of Ice Containing Gas Bubbles -- 6.1 Optical Properties of Ice Containing Numerous Gas Bubbles. , 6.2 Absorption of Solar Radiation in Scattering Ice Sheet -- 6.3 The Case Study for Solar Heating of Ice Sheet -- 7 Conclusion -- References -- Stereological Methods in the Theory of Light Scattering by Nonspherical Particles -- 1 Introduction -- 2 Fraunhofer Diffraction -- 2.1 Single Obstacle Approximation -- 2.2 Diffraction by a Screen -- 2.3 Discussion -- 3 Rayleigh-Gans Approximation -- 3.1 Solution for a Single Particle -- 3.2 Densely Packed Random Medium -- 4 Wentzel-Kramers-Brillouin Approximation and Anomalous Diffraction -- 4.1 Single Particle -- 4.2 Comparison with the Discrete-Dipole Approximation -- 4.3 Discussion -- 5 Geometrical Optics -- 5.1 Extinction and Absorption -- 5.2 Scattering Phase Function -- 5.3 Polarization -- 5.4 Numerical Comparison with Some Models -- 6 Application to Optics of Snow and White Ice -- 6.1 Theory -- 6.2 In Situ Measurements -- 6.3 Laboratory Measurements -- 7 Conclusion -- References -- Inverse Methods in Studies of Terrestrial Atmosphere -- 1 Introduction -- 2 Remote Sensing Instrumentation -- 3 The Coupled Atmosphere-Surface Properties and Satellite Processing Chains -- 4 Inverse Problems -- 4.1 Classification of Inverse Problems -- 4.2 The Inversion Theory -- 4.3 Machine Learning Methodologies -- 4.4 Artificial Neural Networks (ANN) -- 4.5 Random Forests -- 5 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Light absorption. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (165 pages)
    Edition: 1st ed.
    ISBN: 9783030876838
    Series Statement: Springer Series in Light Scattering Series
    DDC: 523.113
    Language: English
    Note: Intro -- Contents -- Light-Absorbing Particles in Snow and Ice: A Brief Journey Across Latitudes -- 1 Introduction -- 2 A Journey Across Latitudes -- 2.1 Middle Latitudes -- 2.2 Tropical Areas -- 2.3 Polar Regions -- 3 Optical Properties of LAPs on Snow and Ice -- 3.1 Non-carbonaceous Particles -- 3.2 Carbonaceous Particles -- 3.3 Biogenic Particles -- 3.4 Cryoconite -- 4 Proximal and Remote Sensing of LAPs -- 4.1 Field Spectroscopy -- 4.2 Airborne Sensor Data -- 4.3 Satellite Data -- 5 Conclusion and Future Perspectives -- References -- Machine Learning Based Retrieval Algorithms: Application to Ocean Optics -- 1 Introduction -- 2 Physical Model -- 3 Machine Learning Model -- 4 Important Aspects of ML -- 4.1 Data -- 4.2 Quality of Fit -- 4.3 Multilayer Perceptron (MLP) -- 4.4 Hyperparameters -- 4.5 Activation Functions -- 4.6 Optimization Methods -- 5 ML Based Ocean Optics Retrieval Algorithms -- 5.1 Conclusion -- References -- Radiative Properties of Non-spherical Black Carbon Aerosols -- 1 Introduction -- 2 The Morphological Characteristics of BC -- 2.1 Bare BC -- 2.2 Coated BC -- 3 Modeling of the Radiative Properties of Non-spherical BC -- 3.1 Light Scattering Methods -- 3.2 Models -- 3.3 Radiative Properties of Non-spherical BC -- 4 The Optical Measurements Constrained by BC Morphologies -- 4.1 The Retrieval of BC Size Distribution -- 4.2 The Retrieval of BC Refractive Index -- 4.3 The Retrieval of BrC Absorption -- 5 Paramerization of Radiative Properties of BC with Non-spherical Morphologies -- 6 Coupling Non-spherical BC Radiative Model with the Chemical Transport Model -- 7 Summary and Future Remarks -- References -- Scattering of Shaped Beams by Large Particles: Theoretical Interpretation and Numerical Techniques -- 1 Introduction -- 2 Theoretical Framework of Variable Separation Method. , 3 Beam Shape Coefficients in Different Coordinate Systems -- 3.1 BSC in Spherical Coordinate System -- 3.2 BSC in Other Coordinate Systems -- 4 Scattering Coefficients -- 5 Calculation of Physical Quantities and Software ABSphere -- 6 Angular Spectrum Decomposition -- 6.1 Angular Spectrum Decomposition of a Shaped Beam -- 6.2 Homogeneous and Inhomogeneous Plane Waves -- 6.3 Shaped Beams with Simple Symmetry -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Earth sciences. ; Environment. ; Physics. ; Lehrbuch ; Atmosphäre ; Chemie ; Klima ; Umweltveränderung ; Zusammensetzung ; Lehrbuch ; Fernerkundung ; Atmosphäre ; Chemische Reaktion ; Aerosol ; Gas ; Ozon ; Satellitenfernerkundung ; Bewölkung ; Treibhausgas ; Anthropogene Klimaänderung ; Sonnenstrahlung ; Wasserdampf ; Wolke ; Atmosphärisches Aerosol
    Description / Table of Contents: Introduction to remote sensing -- Physical properties of the terrestrial atmosphere -- Light scattering, absorption, extinction, and propagation in the terrestrial atmosphere -- Radiative transfer models.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XI, 297 p. 89 illus., 73 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030667450
    Series Statement: Springer eBook Collection
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Atmospheric sciences ; Environmental sciences ; Climate change ; Meteorology ; Thermodynamics
    Description / Table of Contents: Chapter 1. Dynamical Processes in Arctic atmosphere ( Marius O. Jonassen, Dmitry Chechin, Alexey Karpechko, Christof Lüpkes, Thomas Spengler, Annick Tepstra, Timo Vihma, and Xiangdong Zhang) -- Chapter 2. Thermodynamics of Arctic atmosphere (Claudio Tomasi, Boyan H. Petkov, Oxana Drofa, and Mauro Mazzola) -- Chapter 3. Trace gases in Arctic atmosphere (Kimberly Strong, William R. Simpson, Kristof Bognar, Rodica Lindenmaier, and Sébastien Roche) -- Chapter 4. Arctic aerosol (Roberto Udisti, Rita Traversi, Silvia Becagli, Claudio Tomasi, Mauro Mazzola, Angelo Lupi, and Patricia K. Quinn) -- Chapter 5. Arctic clouds (Abhay Devasthale, Joseph Sedlar, Michael Tjernström and Alexander Kokhanovsky) -- Chapter 6. Arctic fog (Ismail Gultepe, Andrew J. Heymsfield, Martin Gallagher) -- Chapter 7. Polar stratospheric clouds (Francesco Cairo, and Tiziana Colavitto) -- Chapter 8. Noctilucent clouds (Christian von Savigny, Gerd Baumgarten, and Franz-Josef Lubken) -- Chapter 9. Remote sensing of Arctic atmosphere (Alexander Kokhanovsky, Claudio Tomasi, Alexander Smirnov, Andreas Herber, Roland Neuber, André Ehrlich, Angelo Lupi, Boyan H. Petkov, Mauro Mazzola, Christoph Ritter, Carlos Toledano, Thomas Carlund, Vito Vitale, Brent Holben, Tymon Zielinski, Simon Bélanger, Pierre Larouche, Stefan Kinne, Vladimir Radionov, Manfred Wendish, Jason L. Tackett and Dave M. Winker) -- Chapter 10. Radiation in Arctic atmosphere and atmosphere-cryosphere feedbacks (Claudio Tomasi, Boyan H. Petkov, Angelo Lupi, and Mauro Mazzola and Christian Lanconelli, and I. Gultepe) -- Chapter 11. Climate change in Arctic (T. Koenigk, J. Key, and T. Vihma).
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIV, 717 p. 215 illus., 139 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9783030335663
    Series Statement: Springer Polar Sciences
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Atmosphere-Remote sensing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (305 pages)
    Edition: 1st ed.
    ISBN: 9783030667450
    DDC: 551.5028
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Introduction to Remote Sensing -- 1.1 Remote Sensing: From the Past to the Present -- 1.2 Satellite Remote Sensing -- 1.2.1 General Methodology -- 1.2.2 The Need for Atmospheric Research from Space -- 1.2.3 Satellite Orbits -- 1.2.4 Scan Modes, Geometry of Observation and Swaths -- 1.3 Data Processing in Remote Sensing -- 1.3.1 General Scheme -- 1.3.2 Level 0-Level 1 (Radiometric Calibration) -- 1.3.3 Level 1-Level 2 (Retrieval) -- 1.3.4 Big Data in Remote Sensing -- 1.4 Electromagnetic Spectrum -- 1.5 Instruments in Remote Sensing -- 1.5.1 Measurement Principles -- 1.5.2 The Instrumental Spectral Response Function -- 1.5.3 Spatial, Temporal and Spectral Resolution -- 1.5.4 Signal-to-Noise Ratio -- 1.5.5 Spectrometers and Imagers -- 1.5.6 Spectrometers -- 1.5.7 Imagers -- 1.6 Concluding Remarks -- References -- 2 Physical Properties of the Terrestrial Atmosphere -- 2.1 Physical Properties of the Atmosphere at the Sea Level -- 2.2 Atmospheric Retention -- 2.3 Pressure Profile -- 2.4 Temperature Profile -- 2.5 Gaseous Composition of the Atmosphere -- 2.6 Radiation Transfer from the Sun to the Earth -- 2.7 Earth's Energy Balance Based on the Stefan-Boltzmann Law -- 2.8 Solar Spectrum and Terrestrial Thermal Emission -- 2.9 Qualitative Description of the Greenhouse Effect -- 2.10 Radiative Forcing and Climate Sensitivity -- 2.11 Equilibrium Time -- 2.12 Feedbacks -- 2.13 Atmospheric Aerosols -- 2.14 Clouds -- References -- 3 Light Scattering, Absorption, Extinction, and Propagation in the Terrestrial Atmosphere -- 3.1 Radiative Transfer Theory: Phenomenological Approach -- 3.2 Radiance -- 3.3 Irradiance -- 3.4 Radiation Density and Moments of the Radiation Field -- 3.5 Radiance and Photon Flux -- 3.6 Radiance and Poynting Vector -- 3.7 Radiative Transfer and the First Principle Derivations. , 3.8 Polarization: Historical Outlook -- 3.9 Stokes Parameters, Polarization Ellipse for Monochromatic Light -- 3.10 Polarization of Quasi-monochromatic Light -- 3.11 Stokes Vector and Degree of Polarization -- 3.12 Measurement Principles of Stokes Polarization Parameters -- 3.13 Rotation Transformation Rule for the Stokes Parameters -- 3.14 Circular Basis Representation of the Stokes Parameters -- 3.15 Light Scattering, Absorption and Extinction by Atmospheric Particles -- 3.16 Single-Scattering Phase Functions -- 3.17 Modeled Phase Functions -- 3.18 Phase Matrix -- 3.19 Techniques for Computing Phase Functions/Matrices -- 3.20 Molecular Scattering -- 3.21 Geometrical Optics Approximation -- 3.22 Absorption by Atmospheric Gases -- 3.23 Reflection and Transmission Functions -- 3.24 Surface Bidirectional Reflectance Distribution Function -- 3.25 Compilation of Atmospheric Parameters -- References -- 4 Radiative Transfer Models -- 4.1 Radiative Transfer Equation -- 4.2 Multiple Scattering Pseudo-source and Thermal Emission Source -- 4.3 Rotational Raman Scattering -- 4.4 Boundary Value Problems in Radiative Transfer -- 4.5 Exact and Approximate Solution Techniques -- 4.6 Azimuthal Expansion of the Radiative Transfer Equation -- 4.7 Discrete Ordinate Method -- 4.7.1 General Remarks -- 4.7.2 Quadrature Rule -- 4.7.3 Spatial Discretization -- 4.7.4 Matrix Exponential Method -- 4.7.5 Inverse of the Eigenvector Matrix -- 4.7.6 Solution for the Multilayer Atmosphere -- 4.7.7 Radiance Field Inside a Layer -- 4.7.8 Solution at a Given Viewing Zenith Angle: Source Function Integration and the Method of False Discrete Ordinates -- 4.8 Matrix Operator Method -- 4.9 The Spherical Harmonics Method -- 4.10 Radiative Transfer in the Coupled Atmosphere-Underlying Surface System -- 4.10.1 Source Function -- 4.10.2 Quadrature Scheme. , 4.10.3 Boundary Conditions for the Coupled Atmosphere-Ocean System -- 4.11 Required Number of Discrete Ordinates -- 4.12 Single-Scattering Approximation -- 4.13 Adding-Doubling Method -- 4.14 Successive Orders of Scattering -- 4.15 Padé and Taylor Series Approximations for Computing Matrix Exponentials -- 4.16 Small-Angle Approximation -- 4.17 Deep-Layer Regime -- 4.18 Optically Thick Layers -- 4.19 Phase Function Truncation Methods -- 4.20 Pseudo-spherical Model -- 4.21 Polarized Radiative Transfer Equation -- 4.22 Radiative Transfer Models for Horizontally Inhomogeneous Media -- 4.22.1 Deterministic Models -- 4.22.2 Stochastic Radiative Transfer Models -- References -- 5 Inverse Problems -- 5.1 Direct and Inverse Radiative Transfer Problems -- 5.2 Example of Trace Gas Vertical Column Density Retrieval -- 5.3 Radiance and Differential Radiance Models -- 5.4 Basic Retrieval Techniques -- 5.5 Differential Optical Absorption Spectroscopy -- 5.5.1 General -- 5.5.2 Retrieval of the Slant Column Density -- 5.5.3 Conversion of the Slant Column Density to the Vertical Column Density -- 5.5.4 Linearization and Generalized DOAS Equation -- 5.6 Temperature Profile Retrieval by Nadir Sounding -- 5.7 Inversion of the Linear Problem -- 5.7.1 Fredholm Equation -- 5.7.2 Discretization of the Linear Problem -- 5.7.3 Concept of Ill-Posedness -- 5.7.4 Algebraic Interpretation of Courant-Hadamard Conditions -- 5.7.5 Under-/over-Constrained Problems -- 5.7.6 The Singular Value Decomposition -- 5.7.7 Solvability -- 5.7.8 Least Square Solution in the Case of Noisy Data -- 5.7.9 Ill-Posedness of the Least-Square Solution -- 5.8 Regularization of Inverse Problems -- 5.8.1 Regularization Principles -- 5.8.2 Regularization Matrices -- 5.8.3 Tikhonov Regularization Based on a Priori Statistical Information -- 5.8.4 Bayesian Approach. , 5.8.5 Singular Value Decomposition for Regularized Solution -- 5.9 Choice of the Regularization Parameter -- 5.9.1 Error Characteristics in the State Space -- 5.9.2 Error Characteristics in the Data Space -- 5.10 Regularization Parameter Choice Methods -- 5.10.1 A Priori Parameter Choice Method -- 5.10.2 Discrepancy Principle -- 5.10.3 Generalized Cross-Validation and Maximum Likelihood Estimation Methods -- 5.10.4 L-Curve Method -- 5.11 Tikhonov Regularization for Nonlinear Problems -- 5.11.1 Definition of the Problem -- 5.11.2 Inversion of the Linearized Model -- 5.11.3 Quadratic Model -- 5.11.4 Global Optimization (Direct Search Methods) -- 5.12 Linearization Techniques -- 5.12.1 Definition -- 5.12.2 Automatic Differentiation -- 5.12.3 Analytical Differentiation -- 5.12.4 Adjoint Approach -- 5.13 Dimensionality Reduction Based Retrievals -- 5.13.1 Basic Concept of Dimensionality Reduction -- 5.13.2 Principal Component Analysis -- 5.13.3 Principal Component Regression Models -- 5.13.4 Principal Component Analysis in the Framework of DOAS -- 5.13.5 Retrieval in the Reduced Input Space -- References -- Appendix Useful links -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Atmospheric science-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (723 pages)
    Edition: 1st ed.
    ISBN: 9783030335663
    Series Statement: Springer Polar Sciences Series
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- 1 Dynamical Processes in the Arctic Atmosphere -- 1.1 Introduction -- 1.2 Large-Scale Circulation in the Troposphere and Stratosphere -- 1.2.1 Stratospheric Circulation -- 1.2.1.1 General Characteristics of the Arctic Stratosphere and Its Circulation -- 1.2.1.2 Arctic Stratosphere Variability and Change -- 1.2.2 Stratosphere-Troposphere Coupling -- 1.2.3 Tropospheric Large-Scale Circulation -- 1.3 Synoptic-Scale Cyclones -- 1.3.1 Theoretical Background -- 1.3.2 Observed Arctic Cyclones -- 1.3.3 Modeling Studies of Arctic Cyclones -- 1.4 Polar Lows -- 1.4.1 Introduction -- 1.4.2 In-Situ Observations of Polar Lows -- 1.4.3 Ambient Environments for Polar Low Genesis -- 1.4.3.1 Synoptic Scale Configuration -- 1.4.3.2 Forward and Reverse Shear Classification -- 1.4.4 Climatology of Polar Lows -- 1.4.4.1 Spatial Distribution -- 1.4.4.2 Selection Criteria -- 1.4.5 Dynamical Mechanisms -- 1.4.5.1 Diabatic Processes -- 1.4.6 Climate-Scale Interaction of Polar Lows with the Ocean and Sea-Ice -- 1.4.7 Forecasting of Polar Lows -- 1.5 Orographic Effects on Dynamics of the Arctic Atmosphere -- 1.5.1 Theoretical Background -- 1.5.2 Observations of Orographic Flow in the Arctic -- 1.5.3 Numerical Simulations of Orographic Flows in the Arctic -- 1.6 Atmospheric Boundary-Layer Dynamics -- 1.6.1 Theoretical Background -- 1.6.2 Observed ABL in the Arctic -- 1.6.3 ABL Modelling -- References -- 2 Thermodynamics of the Arctic Atmosphere -- 2.1 Introduction -- 2.2 Analysis and Corrections of the Radiosounding Measurements -- 2.2.1 Correction of Raw Pressure Measurements Provided by the Various Radiosonde Models and Results -- 2.2.2 Correction of Raw Temperature Measurements Provided by the Various Radiosonde Models -- 2.2.3 Correction of Raw Relative Humidity Measurements Provided by the Various Radiosonde Models. , 2.2.4 Calculation of the Vertical Profiles of Absolute Humidity for the RS Measurements Performed with the Various Radiosonde Models -- 2.3 Annual Variations in the Monthly Mean Vertical Profiles of Air Pressure and in the Monthly Mean Values of Surface-Level Pressure -- 2.4 Annual Variations in the Surface-Level Temperature Conditions of the Arctic Atmosphere -- 2.4.1 Seasonal Variations in the Vertical Profiles of Air Temperature -- 2.4.1.1 Seasonal Variations in the Structural Parameters of the Ground-Based Temperature Inversion -- 2.4.1.2 Seasonal Changes in the Thermal Characteristics of the Tropopause Region -- 2.5 Annual Variations in the Vertical Profiles of Absolute Humidity -- 2.6 Annual Cycles of Precipitable Water -- 2.7 Conclusions: Trends of Surface-Level Temperature, Surface-Level Absolute Humidity and Precipitable Water over the 2001-2015 Years in the Arctic Region -- References -- 3 Trace Gases in the Arctic Atmosphere -- 3.1 Introduction -- 3.2 Tropospheric Ozone and Halogens -- 3.2.1 Tropospheric Ozone -- 3.2.2 Halogen Chemistry -- 3.3 Greenhouse Gases -- 3.3.1 Introduction -- 3.3.2 The Arctic Carbon Cycle -- 3.3.3 Greenhouse Gas Measurements -- 3.3.4 Current Issues -- 3.4 Stratospheric Ozone -- 3.4.1 Introduction -- 3.4.2 Dynamical Processes in the Arctic Stratosphere -- 3.4.3 Chemical Processes in the Arctic Stratosphere -- 3.4.4 Ozone Recovery -- References -- 4 Arctic Aerosols -- 4.1 Arctic Haze -- 4.1.1 Introduction to Arctic Haze -- 4.1.2 Atmospheric Transport of Aerosol Pollutants to the Arctic -- 4.1.3 Long Term Observations of Arctic Haze -- 4.1.4 Vertical Distributions of Arctic Pollution -- 4.1.5 Potential Impacts of a Changing Climate on Arctic Haze -- 4.2 Background Arctic Aerosol -- 4.2.1 Introduction -- 4.2.2 Measurements of Aerosol Chemical Composition at Ny-Ålesund. , 4.2.2.1 PM10 Sampling and Calculation of Chemical Components -- 4.2.2.2 Chemical Composition of PM10 Collected at Ny-Ålesund -- 4.2.2.3 Multi-stage Sampling and Analysis of the Chemical Components at Ny-Ålesund -- 4.2.2.4 In-situ Measurements of the Aerosol Optical Parameters at Ny-Ålesund -- 4.2.2.5 Measurements of the BC, OC, EC and TC Mass Concentrations at Ny-Ålesund (Spitsbergen) -- 4.2.2.6 A General Picture of the Chemical Composition Characteristics of Sub-Micrometric, Super-Micrometric and Overall Aerosol Particles at Ny-Ålesund (Spitsbergen, Svalbard) -- 4.2.3 Chemical Composition of PM10 Collected at Thule (Greenland) from 2010 to 2014 -- 4.2.3.1 Evaluation of the Optical Characteristics and Chemical Composition Features of Aerosol Particles at Thule -- 4.2.4 Measurements of Sub-Micrometric Aerosol Chemical Composition in the Central Arctic Ocean -- 4.2.5 Measurements of Aerosol Chemical Composition at Barrow (Alaska, USA) -- 4.2.5.1 Determination of the Chemical Composition of Sub-Micrometric Particles at Barrow -- 4.2.5.2 Determination of the Chemical Composition of Super-Micrometric Particles at Barrow -- 4.2.5.3 Measurements of the Optical Characteristics of Aerosol Particles at Barrow -- 4.2.5.4 Determination of the Mass Fractions of the Chemical Components of Sub-Micrometric, Super-Micrometric and Overall Aerosol Particles at Barrow and Their Optical Properties -- 4.2.6 Measurements of Aerosol Chemical Composition at Alert (Nunavut, Canada) -- 4.2.6.1 Evaluation of Sub-Micrometric and Super-Micrometric Particle Chemical Composition at Alert -- 4.2.6.2 Determination of the Chemical Composition of Sub-Micrometric, Super-Micrometric and Overall Aerosol Particles at Alert -- 4.2.7 Concluding Remarks -- References -- 5 A Climatological Overview of Arctic Clouds -- 5.1 Lessons Learned from the Campaign Measurements. , 5.1.1 Frequent Presence of Cloud Liquid -- 5.1.2 Surface Cloud Radiative Forcing at High Latitudes -- 5.1.3 Cloud Interaction with Thermodynamic Structure -- 5.1.4 Surface to Cloud Decoupling Structure -- 5.2 Climatological View of Arctic Clouds from the Satellite Climate Data Records -- 5.3 Cloud Response to Decreasing Sea Ice Extent in the Arctic -- 5.4 How Do Moisture Intrusions Affect Clouds in the Arctic? -- References -- 6 Arctic Ice Fog: Its Microphysics and Prediction -- 6.1 Introduction -- 6.2 Ice Fog Physical Properties and Formation Mechanisms -- 6.3 Measurements of Ice Fog and Visibility -- 6.3.1 Ground Based In-Situ Measurements -- 6.3.2 Remote Sensing Based Observations -- 6.3.2.1 Satellite Based Monitoring -- 6.3.2.2 Microwave Radiometer (MWR) Based Monitoring -- 6.3.2.3 LiDAR, Radar, and Ceilometer Based Monitoring -- 6.4 Ice Fog Prediction -- 6.4.1 Visibility Definition -- 6.4.2 Parameterization for Ice Fog Visibility -- 6.4.3 Heterogeneous Ice Nucleation -- 6.4.3.1 Fletcher (1962) Parameterization -- 6.4.3.2 Koenig and Murray (1976) Parameterization -- 6.4.3.3 Meyers et al. (1992) Parameterization -- 6.4.3.4 Cooper (1986) Parameterization -- 6.4.3.5 Latest IN Parameterizations -- 6.4.4 Ni Estimation by Homogeneous Freezing Nucleation -- 6.5 Autoconversion Processes and Ice Fog -- 6.6 Challenges Related to Ice Fog Modeling for Weather and Climate -- 6.6.1 HRDPS Model -- 6.6.2 North American Mesoscale (NAM) Model -- 6.6.3 WRF Model -- 6.6.4 Ice Fog and LES Models -- 6.6.5 Climate Models and Ice Fog Radiative Impact -- 6.7 Discussion -- 6.7.1 Measurement Issues and Instruments -- 6.7.2 Modeling Issues and Future Challenges -- 6.7.3 Remote Sensing Issues for Ice Fog Detection and Microphysical Parameters -- 6.7.4 Overall Research Needs for Ice Fog Analysis -- 6.8 Conclusions -- References -- 7 Polar Stratospheric Clouds in the Arctic. , 7.1 Historical Overview -- 7.2 The Stratospheric Ozone -- 7.2.1 Opening Remarks -- 7.2.2 The Chapman Cycle and the Catalytic Cycles -- 7.2.3 Dynamics of the Stratosphere -- 7.2.3.1 Waves in the Stratosphere -- 7.2.3.2 Polar Vortex -- 7.3 CFCs and Heterogeneous Chemistry in the Polar Stratosphere -- 7.3.1 Stratospheric Sulphate Aerosol -- 7.3.2 Polar Stratospheric Clouds -- 7.3.3 The ClOOCl Dimer and His Role in the Ozone Loss -- 7.4 PSC Observations in the Arctic -- 7.4.1 Ground Based Measurements -- 7.4.2 Airborne Campaigns -- 7.4.3 Balloon Campaigns -- 7.4.4 The Satellite Picture -- 7.5 PSC Composition and Modelling -- 7.6 Conclusions -- References -- 8 Noctilucent Clouds: General Properties and Remote Sensing -- 8.1 Introduction -- 8.2 Brief History of NLC Research -- 8.3 Basic Characteristics of NLC -- 8.3.1 The Polar Summer Mesopause Region -- 8.3.2 Global Morphology of NLC -- 8.3.3 Microphysical Properties of NLC -- 8.4 Variability of NLC on Different Spatial and Temporal Scales -- 8.4.1 Solar Influence -- 8.4.2 Planetary Wave Signatures in NLC -- 8.4.3 Interhemispheric Coupling -- 8.4.4 Lunar Influence -- 8.4.5 Noctilucent Clouds as Potential Indicators for Climate Change -- 8.5 Remote Sensing of NLC -- 8.5.1 Passive Remote Sensing Methods -- 8.5.1.1 Ground-Based Visual Observations -- 8.5.1.2 Satellite Observations of NLC -- 8.5.2 Active Remote Sensing Methods -- 8.5.2.1 Lidar -- 8.5.3 Particle Size Observations -- 8.6 Conclusions -- References -- 9 Remote Sensing of Arctic Atmospheric Aerosols -- 9.1 Remote Sensing of Arctic Aerosols Using Ground-Based Optical Measurements -- 9.1.1 Introduction -- 9.1.2 The Sun-Photometric Method Used to Measure the Aerosol Extinction Properties at Visible and Near-Infrared Wavelengths. , 9.1.3 Ground-Based Sun-Photometer Measurements of Aerosol Optical Thickness and Ångström's Wavelength Exponent at Various Arctic Sites.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Light-Scattering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (201 pages)
    Edition: 1st ed.
    ISBN: 9783031102981
    Series Statement: Springer Series in Light Scattering Series
    DDC: 535.43
    Language: English
    Note: Intro -- Contents -- Multiple-Path Model of Reflection and Transmission for a Turbid Slab -- 1 Introduction -- 2 Probability Flux, Reflection, and Transmission -- 2.1 Path Length Probability Density -- 2.2 Boundary Conditions -- 3 Reflection and Transmission-No Internal Reflection -- 3.1 Reflection -- 3.2 Transmission -- 3.3 Summary-No Internal Reflection -- 4 Experiment-Dyed Fabric -- 5 Diffusion of Light in Paper -- 6 Reflection and Transmission-Internal Reflection -- 6.1 Boundary Conditions -- 6.2 Evaluation of Integral -- 6.3 Reflection and Transmission -- 6.4 Reflection -- 6.5 Transmission -- 6.6 Normalization -- 6.7 Plots of Reflectance and Transmittance-Internal Reflection -- 7 Conclusion -- References -- Laboratory Measurements of Multi-spectral, Polarization, and Angular Characteristics of Light Reflected from Particulate Samples -- 1 Introduction -- 2 Basic Definitions and Design Tradeoffs -- 2.1 Reflectance Configuration and Nomenclature -- 2.2 Instrument Design Tradeoffs -- 3 The Three-Colour Goniometer -- 3.1 Construction Motivations -- 3.2 System Descriptions -- 3.3 System Characterizations -- 3.4 Typical Measurement Results -- 4 The Bi-directional Reflectance Imaging System -- 4.1 Construction Motivations -- 4.2 Overall Description -- 4.3 Calibration and Characterizations -- 4.4 Example Measurements -- 5 The Bi-directional Reflectance Spectrometer -- 5.1 Construction Motivations -- 5.2 System Descriptions -- 5.3 Characterizations and Calibrations -- 5.4 Typical Measurement Results -- 6 Summary -- References -- Spectropolarimetry of Snow and Ice Surfaces: Measurements and Radiative Transfer Calculation -- 1 Introduction -- 2 Definition of Radiant Quantities Concerning the Polarization State of Light -- 3 Spectral Measurements and Instrumentation Device. , 4 Spectral Polarization Properties of Light Reflected from Snow and Ice Surfaces -- 4.1 Spectral Dependence on the DoLP, upper P Subscript qPq, upper P Subscript uPu and HDRF -- 4.2 Snow Grain Size Dependence on the DoLP -- 4.3 High DoLP for the Melt-Freeze Crust -- 4.4 Viewing Angle Dependence on the DoLP -- 4.5 Viewing and Azimuth Angle Dependence on the DoLP and Related Parameters upper P Subscript qPq and upper P Subscript uPu -- 4.6 Atmosphere Effects on the Polarization Properties of Snow Surface by Use of the Radiative Transfer Model -- 4.7 Possibility of the Use of Polarization Information for the Remote Sensing -- 5 Conclusion and Closing Remarks -- References -- Light Scattering by Large Densely Packed Clusters of Particles -- 1 Introduction -- 2 Model Description -- 2.1 DGTD Method -- 2.2 Parallel Light Scattering Code -- 2.3 Generation of Dense Clusters of Irregular Particles -- 3 Results -- 3.1 Non-absorbing Clusters -- 3.2 Absorbing Layers -- 4 Conclusion -- References -- Light Backscattering by Atmospheric Particles: From Laboratory to Field Experiments -- 1 Introduction -- 1.1 On the Complexity of Atmospheric Particles -- 1.2 On the Importance of Light Backscattering by Atmospheric Particles -- 1.3 Theoretical Considerations -- 1.4 State of the Art on LightBackscattering -- 1.5 Outline of this Book Chapter -- 2 Light Scattering at Near Backscattering Angles ( θ< -- π) -- 2.1 The Laboratory π+ε Polarimeter -- 2.2 Scattering Matrix Elements Retrieval at Near Backscattering ( θ< -- π) -- 2.3 Light Scattering by Mineral Dust at Near Backscattering Angles ( θ< -- π) -- 2.4 Comparison with T-matrix Numerical Simulations -- 3 Light Backscattering at Exact Backscattering Angle (θ=π) -- 3.1 The Laboratory π-polarimeter (θ=π) -- 3.2 Scattering Matrix Elements and Lidar PDR Retrieval at Backscattering (θ=π). , 3.3 Light Backscattering by Spherical Sulfates in Laboratory -- 3.4 Light Backscattering by Core-Shell Organic Sulfates in Laboratory -- 3.5 Light Backscattering by Soot Particles in Laboratory -- 3.6 Light Backscattering by Mineral Dust in Laboratory -- 4 Light Backscattering in the Atmosphere: Lidar Field Experiments -- 4.1 Atmospheric Lidar Implications -- 4.2 Field Version of the Laboratory π-polarimeter -- 4.3 Application Case Study: Time-Altitude Maps of Dust Particles Backscattering Revealing the Underlying Complex Physical-Chemistry -- 5 Conclusion and Outlooks -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Astronomy, Ancient. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (167 pages)
    Edition: 1st ed.
    ISBN: 9783030865894
    DDC: 535
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Microphysics and Geometry of Snowpack -- 1.1 Ice Grains in Snow: Size, Density and Shape -- 1.2 The Snow Specific Surface Area -- 1.3 The Snow Water Equivalent -- 1.4 Layered Nature and Complex Geometry of Snow Fields -- 1.5 Snow Impurities: Soot, Dust, and Algae -- 1.6 Optical Constants of Ice -- References -- 2 Local Optical Properties of Snowpack -- 2.1 Geometrical Optics of Large Spherical Particles -- 2.1.1 Light Scattering -- 2.1.2 Light Absorption and Extinction -- 2.2 Local Optical Properties of Snowpack -- 2.2.1 Integral Light Scattering and Absorption Characteristics of Large Nonspherical Scatterers -- 2.2.2 Integral Light Scattering and Absorption Characteristics of Snowpack -- 2.2.3 Phase Function -- 2.2.4 Polarization Characteristics -- 2.2.5 Light Absorption by Polluted Snowpack -- References -- 3 Radiative Transfer in Snowpack -- 3.1 Radiative Transfer Characteristics -- 3.2 Radiative Transfer Equation -- 3.3 Light Field in Deep Layers of Semi-Infinite Weakly Absorbing Snowpack -- 3.4 Reflection of Light from a Semi-Infinite Snow Layer -- 3.4.1 Nonlinear Integral Equation for the Reflection Function -- 3.4.2 Reflection Function of Semi-Infinite Weakly Absorbing Snow Layers -- 3.4.3 Snow Albedo -- 3.4.4 Snow Broadband Albedo -- 3.5 Finite Optically Thick Snow Layers: Reflection and Transmission -- 3.5.1 Ambartsumian Approximation -- 3.5.2 Reflection and Transmission Functions of Nonabsorbing Snow Layers -- 3.5.3 Reflection and Transmission Functions of Weakly Absorbing Snow Layers -- 3.5.4 The Optically Thick Snow Layers with Arbitrary Level of Absorption -- 3.5.5 Account for Underlying Surface and Vertical Snow Inhomogeneity -- 3.6 The Polarization of Light Reflected from Snow -- References -- 4 Remote Sensing of Snow -- 4.1 Determination of Local Optical Parameters of Snow. , 4.1.1 Semi-Infinite Snow Layers -- 4.1.2 Finite Snow Layers -- 4.2 Snow Grain Size Retrieval -- 4.3 Determination of Snow Specific Surface Area -- 4.4 Determination of Snow Impurity Content -- 4.4.1 General Equations -- 4.4.2 Soot -- 4.4.3 Dust -- 4.5 Spaceborne Remote Sensing of Snow -- 4.5.1 Spaceborne Instrumentation -- 4.5.2 Cloud Screening -- 4.5.3 Atmospheric Correction -- 4.5.4 Snow Albedo, Snow Grain Size and Snow Specific Area -- 4.5.5 Snow Fraction and Snow Extent -- References -- Appendix -- A.1 Complex Refractive Index of Ice -- A.2 The Polarization Characteristics of Singly Scattered Light -- A.3 The Simplified Radiative Transfer Model -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Clouds-Remote sensing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (242 pages)
    Edition: 1st ed.
    ISBN: 9783030386962
    Series Statement: Springer Series in Light Scattering Series
    Language: English
    Note: Intro -- Contents -- Contributors -- Application of Single and Multiple-Scattering Theories to Analyses of Space-Borne Cloud Radar and Lidar Data -- 1 Introduction -- 2 Single Scattering Properties of Cloud Particles -- 2.1 Discrete Dipole Approximation -- DDA -- 2.2 Scattering Theory Based on Geometric Optics: Physical Optics -- 3 Application of Scattering Theories to Analyze Lidar and Cloud Radar Data -- 3.1 Backscattering Properties of Cloud Particles at Lidar and Radar Wavelengths -- 3.2 Retrieval of Ice Microphysics from Space-Borne Lidar and Radar -- 4 Simulation and Observation of Multiple Scattering Effects from Clouds -- 4.1 Introduction of the PM Approach for Space-Borne Lidar Application -- 4.2 Polarimetric Property of Lidar Multiple Scattering in the VPM -- 4.3 Observation of Lidar Multiple Scattering from Ground-Based Lidar -- 4.4 Observation of Water and Mixed-Phase Clouds with MFMSPL -- 5 Summary and Future Studies -- References -- Airborne Remote Sensing of Arctic Clouds -- 1 Introduction -- 2 Airborne Remote Sensing Instrumentation -- 3 Challenges for Remote Sensing of Arctic Clouds Using Solar Radiation -- 3.1 Mixed-Phase Clouds -- 3.2 Surface Albedo -- 3.3 Horizontal Inhomogeneities and Three-Dimensional Effects -- 4 Retrieval of Cloud Properties Based on Spectral Radiation Measurements -- 4.1 Retrieval of Cloud Thermodynamic Phase -- 4.2 Combined Retrieval of Cloud and Snow Properties -- 5 Retrieval of Cloud Properties Based on Directional Observations -- 6 High Resolution Cloud Spectral Imaging -- 7 Concluding Remarks -- References -- Snow Albedo and Radiative Transfer: Theory, Modeling, and Parameterization -- 1 Introduction -- 2 Snow Radiative Transfer Theory and Modeling -- 2.1 Basic Radiative Transfer Formulation -- 2.2 Snow on Land (Uniformly Refractive Layered Media). , 2.3 Snow on Ice (Non-uniformly Refractive Layered Media) -- 2.4 Other Theories and Models -- 3 Snow Single-Scattering Property Computation -- 3.1 Computational Methods -- 3.2 Snow Single-Scattering Properties -- 4 Snow Albedo Parameterizations -- 4.1 Accounting for Snow Grain Properties -- 4.2 Accounting for Snow Impurities -- 4.3 Accounting for Atmospheric Variables -- 5 Summary, Challenges, and Future Directions -- Appendix -- References -- Spectral Reflectance of Soil -- 1 Introduction -- 2 Reflectance Spectra -- 2.1 Factors Affecting Soil Reflectance Spectra -- 2.2 Bidirectional Reflectance Quantities -- 2.3 Non-lambertian Behavior of Soil Surfaces -- 2.4 Measurements of Soil Bidirectional Reflectance -- 2.5 Modeling of Soil Bidirectional Reflectance -- 3 Soil Albedo -- 3.1 Variation of Soil Albedo -- 3.2 Soil Albedo as a Parameter for Modeling Changes in the Climate of the Earth -- 3.3 Measurements of Diurnal Blue-Sky Albedo Variation of Soils -- 3.4 Equations Predicting Diurnal Blue-Sky Albedo Variation of Soils Taking into Account Their Roughness -- 3.5 Use of Laboratory Data to Predict the Annual Variation of Shortwave Radiation Reflected from Bare Arable Lands Taking into Account Their Roughness -- 4 Concluding Remarks -- References -- Asymptotic Methods in the Theory of Light Scattering by Nonspherical Particles -- 1 Introduction -- 2 Fraunhofer Diffraction -- 2.1 Statement of the Problem -- 2.2 Solution for a Single Obstacle -- 2.3 Randomly Oriented Obstacles -- 2.4 Particular Case of Spherical Particles -- 2.5 Size-Distributed Obstacles -- 2.6 Approximating Formula -- 2.7 Hexagonal Prisms -- 3 Rayleigh-Gans Approximation -- 3.1 Statement of the Problem -- 3.2 Solution for a Single Particle -- 3.3 Randomly Oriented Particles -- 3.4 Approximating Formula -- 3.5 Total Scattering Cross-Section. , 3.6 Chaotically Oriented Cylinder and Size-Distributed Spheres -- 3.7 Inherent Optical Properties -- 4 Wentzel-Kramers-Brillouin (WKB) Approximation -- 4.1 Statement of the Problem -- 4.2 Extinction and Absorption -- 4.3 Scattering Phase Function -- 4.4 Comparison to the Discrete Dipole Approximation -- 5 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Lasers. ; Photonics. ; Environmental sciences. ; Remote sensing.
    Description / Table of Contents: Application of single and multiple-scattering theories to analyses of space-borne cloud radar and lidar data -- Airborne remote sensing of Arctic clouds -- Snow albedo and radiative transfer: theory, modeling, and parameterization -- Spectral reflectance of soil -- Asymptotic methods in the theory of light scattering by nonspherical particles.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 237 p. 84 illus., 64 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9783030386962
    Series Statement: Springer Series in Light Scattering
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...