GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Remote sensing. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (301 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319708089
    Serie: Springer Series in Light Scattering Series
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- Contributors -- 1 Polarized Radiative Transfer in Optically Active Light Scattering Media -- 1.1 Introduction -- 1.2 Radiation Transfer Problems for Disperse Optically Anisotropic Media -- 1.2.1 The Radiation Transport Equation for Sparse Disperse Media Derived from the Maxwell Equations for an Ensemble of Scatterers -- 1.2.2 Optically Active Anisotropic Media -- 1.2.3 Quasi-Isotropic Approximation of Geometrical Optics -- 1.3 Radiation Transport Problems for Optically Active Media -- 1.3.1 The Radiation Transport Equation for Isotropic Optically Active Media -- 1.3.2 Radiation Transport Problems for Slabs of Isotropic Optically Active Medium -- 1.3.3 Boundary Conditions -- 1.3.4 Coherently Scattered Radiation in a Slab of Chiral Medium -- 1.3.5 The Equivalent System of Equations for Parameters of Polarization Ellipse -- 1.3.6 Radiation Transfer Problems for Slabs of Chiral Media with Reflecting Boundaries -- 1.4 The Estimation of Medium Weak Anisotropy Influence by a Perturbation Method -- 1.4.1 The Reduction of Transport Problem for Anisotropic Medium to a Recurrently Solvable System of Problems for Isotropic Media -- 1.4.2 The Estimation of Weak Medium Anisotropy Influence -- 1.4.3 An Example: The Estimation of Polarization Characteristics Perturbation in a Slab of Isotropic Medium with Non-Block-Diagonal Scattering Phase Matrix -- 1.5 An Outline of Some Results on Radiation Transfer Problems in Anisotropic Media of Another Types -- 1.5.1 Anisotropic Media in the Earth Atmosphere Remote Sensing Problems -- 1.5.2 Magneto-Gyrotropic Media -- 1.5.3 Optically Active Media Occurred in Bio-Medical Field of Research -- 1.5.4 Multilayered Anisotropic Media -- 1.5.5 Liquid Crystals and Optical Fibers -- Acknowlegements -- References -- 2 Advances in Spectro-Polarimetric Light-Scattering by Particulate Media -- 2.1 Introduction. , 2.2 Problem of Light-Scattering by Particulate Media -- 2.2.1 Single Light-Scattering -- 2.2.2 Multiple Light-Scattering -- 2.3 Spectral Light-Scattering -- 2.4 Polarimetric Light-Scattering -- 2.5 Spectral Polarimetric Light-Scattering -- 2.6 Quantitative Spectro-Polarimetric Light-Scattering -- 2.7 Conclusion -- Acknowledgements -- References -- 3 Light Scattering by Large Bubbles -- 3.1 Introduction -- 3.2 Rigorous Approaches -- 3.2.1 Lorenz-Mie Theory and Its Generalizations -- 3.2.1.1 Spherical Homogenous Bubble with a Plane Wave Illumination -- 3.2.1.2 Other Bubble and Incident Beam Shapes -- 3.2.2 Scattering by an Optically Thin Bubble Cloud -- 3.2.3 Complex Shaped but Small to Moderate Sized Bubbles -- 3.3 Approximations for Large Bubbles -- 3.3.1 Spherical Bubbles -- 3.3.1.1 Geometrical Optics Approximation -- 3.3.1.2 Coupling Geometrical and Physical Optics Approximations -- Forward Diffraction -- Near Critical-Angle Region and the Tunneling Phase -- Goos-Hänchen Angular Shift -- Physical Approximation of the Near Critical-Angle Scattering -- Conclusion -- 3.3.1.3 Zero-Order Transitional Complex Angular Momentum Approximation -- 3.3.2 Complex Shaped Bubbles -- 3.3.2.1 Geometrical Optics Approximations -- 3.3.2.2 Physical-Optics Approximations -- Forward Diffraction -- Near-Critical-Angle Scattering -- 3.4 Conclusion -- Acknowledgements -- References -- 4 Volume Scattering Function of Seawater -- 4.1 Introduction -- 4.2 A New Approach on Measurement of Volume Scattering Functions of Seawater -- 4.2.1 Traditional Methods of Measuring the Properties of Light Scattering in Seawater -- 4.2.2 New Principles of Measurements of Volume Scattering Function Over the Wide Range of Scattering Angles in Seawater -- 4.3 Laboratory Testing of VSF Meter. , 4.3.1 Primary Experiments to Measure Angular Scattering Properties in Clean Seawater, and in Water with Bubbles of Different Size -- 4.3.2 Intercomparison with Scattering Instrumentation Developed in U.S -- 4.3.3 Measurements of VSF of Monodisperse Latex Beads Solution in Pure Water -- 4.3.4 Volume Scattering Functions of Phytoplankton Monocultures -- 4.4 Features of the Optical Properties of Pure Water Discovered Through Volume Scattering Meter -- 4.5 Field Measurements of Volume Scattering Function -- 4.5.1 Volume Scattering Function Measurements in the Middle Atlantic Bight -- 4.5.2 Volume Scattering Function Measurements in Other US Coastal Waters -- 4.5.3 Volume Scattering Function Measurements in European Seas -- 4.5.3.1 Adriatic Sea -- 4.5.3.2 Tyrrhenian Sea -- 4.5.3.3 Southern Baltic Sea -- 4.5.3.4 Black Sea -- 4.6 Volume Scattering Function Variability -- 4.7 Conclusion -- References -- 5 Remote Sensing of Crystal Shapes in Ice Clouds -- 5.1 Introduction -- 5.2 In Situ and Laboratory Measurements -- 5.2.1 General Classification of Ice Habits -- 5.2.2 Aspect Ratios of Ice Crystals -- 5.2.3 Microscale Structure of Ice Crystals -- 5.3 Ice Crystal Optical Properties -- 5.3.1 Definitions of Optical Properties -- 5.3.2 Dependence of Optical Properties on Crystal Shape -- 5.4 Remote Sensing of Ice Crystal Shapes -- 5.4.1 Lidar Measurements -- 5.4.2 Multi-angular Measurements -- 5.4.2.1 Multi-angular Total Reflectances -- 5.4.2.2 Multi-angular Polarized Reflectances -- 5.4.2.3 Data Selection -- 5.4.2.4 Overview of Results -- 5.5 Prospective -- 5.6 Conclusions -- Acknowledgements -- References -- 6 Light Scattering in Combustion: New Developments -- 6.1 Introduction -- 6.2 Soot -- 6.2.1 Laser Induced Incandescence (LII) -- 6.2.2 Cavity Ring Down (CRD) -- 6.2.3 Extinction and Scattering -- 6.2.4 Aggregrates -- 6.3 Coal and Ash -- 6.4 Drops and Sprays. , 6.5 Conclusions -- References -- Some Additional Reviews -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Atmospheric aerosols -- Remote sensing. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This cutting edge book analyzes the effect of aerosols on the Earth's climate and introduces for the first time satellite aerosol remote sensing over land. The book is written by specialists working at the forefront of research in this important area.
    Materialart: Online-Ressource
    Seiten: 1 online resource (398 pages)
    Ausgabe: 1st ed.
    ISBN: 9783540693970
    Serie: Springer Praxis Bks.
    DDC: 551.5113
    Sprache: Englisch
    Anmerkung: Preliminaries -- Table of contents -- List of contributors -- Foreword -- 1 Introduction -- 2 The dark-land MODIS collection 5 aerosol retrieval: algorithm development and product evaluation -- 3 The time series technique for aerosol retrievals over land from MODIS -- 4 Iterative procedure for retrieval of spectral aerosol optical thicknessand surface reflectance from satellite data using fast radiative transfer code and its application to MERIS measurements -- 5 Aerosol retrieval over land using the (A)ATSR dual-view algorithm -- 6 Aerosol optical depth from dual-view (A)ATSR satellite observations -- 7 Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers -- 8 Benefits and limitations of the synergistic aerosol retrieval SYNAER -- 9 Retrieval of aerosol properties over land using MISR observations -- 10 Polarimetric remote sensing of aerosols over land surfaces -- 11 Optimal estimation applied to the joint retrieval of aerosol optical depth and surface BRF using MSG/SEVIRI observations -- 12 Remote sensing data combinations: superior global maps for aerosol optical depth -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Light -- Scattering. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.
    Materialart: Online-Ressource
    Seiten: 1 online resource (261 pages)
    Ausgabe: 1st ed.
    ISBN: 9783642219078
    Serie: Springer Praxis Bks.
    DDC: 535.43
    Sprache: Englisch
    Anmerkung: Intro -- Light Scattering Reviews 7 -- Contents -- List of Contributors -- Notes on the contributors -- Preface -- Part I Light Scattering and Radiative Transfer -- 1 Light scattering by densely packed systems of particles: near-field effects -- 1.1 Introduction -- 1.2 Scattering of electromagnetic waves by a system of spherical particles. Basic notions and equations -- 1.3 Shielding of particles by each other in the near field -- 1.3.1 Mutual shielding in simple systems of particles -- 1.3.2 Mutual shielding of particles in chaotically oriented large clusters -- 1.4 Interaction of particles in the near field and the opposition phenomena -- 1.4.1 The field inhomogeneity near the scatterers -- 1.4.2 Different scattering mechanisms: comparison of contributions to the scattering characteristics of simple clusters -- 1.4.3 Near-field effects in the large clusters -- 1.4.4 The near-field and weak-localization effects: the ranges of influence -- 1.5 Concluding remarks -- Acknowledgments -- References -- 2 Multi-spectral luminescence tomography with the simplified spherical harmonics equations -- 2.1 Introduction -- 2.2 Challenges in tissue optics -- 2.2.1 Tissue scattering and absorption -- 2.2.2 Tomography and light source reconstruction -- 2.3 Methods of multi-spectral luminescence tomography -- 2.3.1 Radiative transfer model -- SP3 equations -- Analytical solutions -- Numerical solutions -- 2.3.2 Source reconstruction methods -- Algebraic reconstruction technique and maximum-likelihood expectation-maximization -- Gradient-based source reconstruction -- Stochastic source reconstruction -- 2.4 Applications -- 2.4.1 Multi-spectral bioluminescence tomography -- 2.4.2 Multi-spectral Cerenkov light tomography -- 2.4.3 Multi-spectral fluorescence tomography -- Hyper-spectral excitation-resolved fluorescence tomography -- 2.5 Summary and Outlook. , Acknowledgments -- References -- 3 Markovian approach and its applications in a cloudy atmosphere -- 3.1 Introduction -- 3.2 Stochastic radiative transfer -- 3.3 Markovian cloud models -- 3.3.1 Levermore-Pomraning model -- 3.3.3 Generalized Titov model -- 3.4 Estimation of model parameters -- 3.4.1 Vertically-integrated statistics -- 3.4.2 Vertically-resolved statistics -- 3.5 Long-term and enhanced observational datasets -- 3.5.1 Multi-year statistics -- 3.5.2 Scanning cloud radar observations -- 3.6 Application of Markovian models -- 3.7 Summary -- Acknowledgments -- Dedication -- Appendix A: Markov processes and fields -- Appendix B: Functions associated with 'direct-beam' exponential components and asymptotic cases -- Appendix C: Estimation of cloud statistics -- List of abbreviations -- References -- 4 Database of optical and structural data for the validation of forest radiative transfer models -- 4.1 Introduction -- 4.2 Study site -- 4.3 Instrumentation -- 4.3.1 PROBA/CHRIS imaging spectrometer -- 4.3.2 Airborne spectrometer UAVSpec -- 4.3.3 Spectrometer FieldSpec-Pro VNIR -- 4.3.4 Spectrometer GER-2600 -- 4.3.5 LAI-2000 plant canopy analyzer (Li-Cor) -- 4.3.6 Coolpix-4500 digital camera -- 4.3.7 Nikon total station DTM-332 -- 4.3.8 Leica ALS50-II airborne laser scanner -- 4.4 Measurements -- 4.4.1 Stand structure -- Ground measurements -- Airborne measurements -- 4.4.2 Spectroscopic measurements -- Reflectance spectra of phytoelements -- Reflectance of ground vegetation -- Airborne measurements -- CHRIS images -- Illumination conditions -- 4.5 Data processing -- 4.5.1 Stand structure -- 4.5.2 Leaf and needle optical properties -- 4.5.3 Correction of UAVSpec data -- 4.5.4 Satellite data -- destriping of images -- Atmospheric correction -- CHRIS calibration revised -- 4.6 Data -- 4.6.1 Illumination conditions -- 4.6.2 Stands. , 4.6.2.1 Birch stand -- 4.6.2.2 Pine stand -- 4.6.2.3 Spruce stand -- 4.7 Concluding remarks -- Acknowledgments -- References -- Part II Optical Properties of Snow and Natural Waters -- 5 Reflection properties of snow surfaces -- 5.1 Introduction -- 5.2 Basic definitions and terminologies -- 5.3 Feedback effect between snow physical parameters and albedo -- 5.4 Atmospheric effects on snow albedo -- 5.4.1 Radiative transfer model for the atmosphere-snow system -- 5.4.2 Aerosol and cloud effects on spectral surface albedo -- 5.4.3 Effect of the difference in atmospheric type on spectrally integrated albedo -- 5.4.4 Aerosol and cloud effects on spectrally integrated albedo -- 5.5 Effects of snow physical parameters on spectral albedo and bidirectional reflectance -- 5.5.1 Observational condition, instrumentation, and radiative transfer model -- 5.5.2 Spectral albedo -- 5.5.3 Observation of HDRF -- 5.5.4 Theoretical calculations of HDRF and comparison with the measurements -- 5.6 Effects of snow physical parameters on broadband albedos -- 5.6.1 Instrumentation, observational condition, and radiative transfer model -- 5.6.2 Effects of the snow grain size on broadband albedos -- 5.6.3 Effects of the snow impurities on broadband albedos -- 5.7 Concluding remarks -- Acknowledgments -- References -- 6 Measuring optical backscattering in water -- 6.1 Introduction -- 6.2 Generic sensor description -- 6.3 Bead method calibration -- 6.3.1 Overview -- 6.3.2 Determination of the weighting function, -- 6.3.3 Determining theoretical phase functions -- 6.3.4 Experimental calibration and application -- 6.3.5 Dependence of the scattering signal on attenuation -- 6.4 Derivation of bb from VSF measurements at single or multiple angles -- 6.5 Analysis of measurement uncertainties -- 6.5.1 Calibration -- 6.5.2 Instrument resolution and electronic noise. , 6.5.3 Long-term stability in background dark offsets (baseline noise) -- 6.5.4 Long-term stability in scaling factors -- 6.5.5 Environmentally induced uncertainties -- 6.5.5.1 Ambient light -- 6.5.5.2 Temperature -- 6.5.5.3 Electromagnetic interference (EMI) -- 6.5.6 Conversion coefficient (χ factor) uncertainties -- 6.5.7 Measurement uncertainty summary -- 6.6 Sensor comparisons in the field -- 6.7 Conclusions -- Acknowledgements -- References -- 7 Molecular light scattering by pure seawater -- 7.1 Introduction -- 7.2 General theory of scattering -- 7.2.1 Isotropic particles -- 7.2.2 Anisotropic particles -- 7.2.3 Liquid solutions -- 7.2.4 Seawater -- 7.3 Brief review and discussion -- 7.3.1 Density derivative -- 7.3.2 Depolarization ratio -- 7.3.3 Effects of sea salts -- 7.3.4 Other relevant issues -- 7.3.4.1 Spectral dependence -- 7.3.4.2 Temperature dependence -- 7.3.4.3 Polarization -- 7.4 Conclusions -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Light -- Scattering. ; Reflection (Optics). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (515 pages)
    Ausgabe: 1st ed.
    ISBN: 9783540376729
    Serie: Springer Praxis Bks.
    DDC: 535.43
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Adaptation (Biology). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (201 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030712549
    Serie: Springer Series in Light Scattering Series
    DDC: 535.43
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- sqrtε Law: Centennial of the First Exact Result of Classical Radiative Transfer Theory -- 1 Introduction -- 2 Mathematical Prologue -- 2.1 The Green Function -- 2.2 Derivation of the sqrtε Law -- 3 Ancient History of sqrtε -- 3.1 Scattering Atmospheres -- 3.2 Milne-Eddington Model -- 3.3 Milne Equation -- 4 Resonance Radiation: Lévy Flights and sqrtε -- 4.1 Biberman-Holstein Equation -- 4.2 Transfer of Excitation in Scattering Media -- 4.3 Boundary Layer -- 4.4 Refinements -- 5 H-Functions, Fraunhafer Lines and sqrtε -- 5.1 Emergent Radiation. H-functions -- 5.2 Account for Continuum Absorption -- 6 Finite Layer: sqrtε and Scaling -- 6.1 Boundary Layers -- 6.2 Interior Solution -- 7 Methods of Derivation of the sqrtε Law -- 8 Polarization: Generalizations of the sqrtε Law -- 8.1 Second Solar Spectrum -- 8.2 Resonance Scattering. Vectors -- 8.3 Resonance Scattering. Matrices -- 8.4 Magnetic Field. Hanle Effect -- 9 Lévy Flights: Approximations Inspired by the sqrtε Law -- 9.1 An Illustration -- 9.2 Basic Approximation -- 9.3 Discussion -- 9.4 Notes -- 9.5 Finite Layer -- 10 Conclusion -- References -- Solar Heating of the Cryosphere: Snow and Ice Sheets -- 1 Introduction -- 2 Differential Models for Radiative Transfer in Light Scattering Media -- 2.1 Transport Approximation -- 2.2 The Simplest Differential Approximations -- 2.3 Propagation of Solar Radiation in Snow -- 2.4 Modified Solution for Refracting Host Medium -- 3 Computational Model for Combined Heat Transfer -- 4 Heating of a Snowpack by Solar Radiation -- 4.1 Spectral Optical Properties of Pure Snow -- 5 Effect of Snow Pollution on Radiative Heating of Snowpack -- 5.1 Internal Versus External Mixture of Soot -- 6 Solar Heating of Ice Containing Gas Bubbles -- 6.1 Optical Properties of Ice Containing Numerous Gas Bubbles. , 6.2 Absorption of Solar Radiation in Scattering Ice Sheet -- 6.3 The Case Study for Solar Heating of Ice Sheet -- 7 Conclusion -- References -- Stereological Methods in the Theory of Light Scattering by Nonspherical Particles -- 1 Introduction -- 2 Fraunhofer Diffraction -- 2.1 Single Obstacle Approximation -- 2.2 Diffraction by a Screen -- 2.3 Discussion -- 3 Rayleigh-Gans Approximation -- 3.1 Solution for a Single Particle -- 3.2 Densely Packed Random Medium -- 4 Wentzel-Kramers-Brillouin Approximation and Anomalous Diffraction -- 4.1 Single Particle -- 4.2 Comparison with the Discrete-Dipole Approximation -- 4.3 Discussion -- 5 Geometrical Optics -- 5.1 Extinction and Absorption -- 5.2 Scattering Phase Function -- 5.3 Polarization -- 5.4 Numerical Comparison with Some Models -- 6 Application to Optics of Snow and White Ice -- 6.1 Theory -- 6.2 In Situ Measurements -- 6.3 Laboratory Measurements -- 7 Conclusion -- References -- Inverse Methods in Studies of Terrestrial Atmosphere -- 1 Introduction -- 2 Remote Sensing Instrumentation -- 3 The Coupled Atmosphere-Surface Properties and Satellite Processing Chains -- 4 Inverse Problems -- 4.1 Classification of Inverse Problems -- 4.2 The Inversion Theory -- 4.3 Machine Learning Methodologies -- 4.4 Artificial Neural Networks (ANN) -- 4.5 Random Forests -- 5 Conclusions -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Clouds -- Thermodynamics. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (296 pages)
    Ausgabe: 1st ed.
    ISBN: 9781402040207
    Serie: Atmospheric and Oceanographic Sciences Library ; v.34
    DDC: 551.576
    Sprache: Englisch
    Anmerkung: Intro -- Cloud Optics -- Contents -- Foreword -- Chapter 1 MICROPHYSICS AND GEOMETRY OF CLOUDS -- 1.1 Microphysical Characteristics of Clouds -- 1.1.1 Droplet Size Distributions -- 1.1.2 Sizes and Shapes of Crystals -- 1.1.3 Refractive Indices of LiquidWater and Ice -- 1.2 Geometrical Characteristics of Clouds -- Chapter 2 OPTICS OF A SINGLE PARTICLE -- 2.1 VectorWave Equation -- 2.2 Mie Theory -- 2.3 Differential and Integral Light Scattering Characteristics -- 2.3.1 Amplitude Scattering Matrix -- 2.3.2 Cross Sections -- 2.3.2.1 Scattering and absorption cross sections -- 2.3.2.2 Extinction cross section -- 2.3.3 Mueller Matrix -- 2.3.4 Spherical Polydispersions -- 2.3.5 Local Optical Characteristics of Clouds -- 2.4 Geometrical Optics -- 2.4.1 Water Droplets -- 2.4.1.1 Scattered light intensity -- 2.4.1.2 Cross sections -- 2.4.1.3 van de Hulst approximation -- 2.4.1.4 The asymmetry parameter -- 2.4.1.5 Polarization characteristics -- 2.4.2 Ice Crystals -- Chapter 3 RADIATIVE TRANSFER -- 3.1 The Radiative Transfer Equation -- 3.2 Reflection and Transmission Functions -- 3.3 Polarization Characteristics -- 3.4 Optically Thin Clouds -- 3.5 Small-Angle Approximation -- 3.6 Optically thick clouds -- 3.6.1 Fundamental Relationships -- 3.6.2 Asymptotic Equations -- 3.6.3 Weak Absorption Limit -- 3.6.3.3 The reflection function of a semi-infinite layer R∞(ξ, η) -- 3.6.4 Nonabsorbing Optically Thick Clouds -- 3.6.4.1 Main equations -- 3.6.5 Exponential Approximation -- 3.6.5.1 Statistical physics approach -- 3.6.5.2 The radiative transfer in the gaseous absorption band -- 3.6.6 Polarization of Light by Optically Thick Clouds -- 3.7 Clouds Over Reflective Surfaces -- 3.8 Vertically Inhomogeneous Clouds -- 3.9 Horizontally Inhomogeneous Clouds -- 3.9.1 Independent Pixel Approximation -- 3.9.2 Multidimensional Radiative Transfer in Clouds. , 3.9.2.1 General remarks -- 3.9.2.2 The three-dimensional radiative transfer equation -- 3.9.2.3 Numerical results -- Chapter 4 APPLICATIONS -- 4.1 Optical Phenomena in Clouds -- 4.1.1 Corona -- 4.1.2 Glory -- 4.1.3 Rainbow -- 4.1.4 Halo -- 4.2 Cloud Remote Sensing -- 4.2.1 Penetration Depth -- 4.2.2 Cloud Optical Thickness -- 4.2.2.1 Retrieval procedure -- 4.2.2.2 Hurricane Erin -- 4.2.2.3 The influence of ground albedo -- 4.2.3 The Size of Droplets and Crystals -- 4.2.4 Single Scattering Albedo -- 4.2.5 Cloud Thermodynamic Phase -- 4.2.6 Cloud Top Height and Cloud Fraction -- 4.2.7 Cloud Bottom Height -- 4.3 Laser Beam Propagation Through a Cloud -- 4.4 Image Transfer Through Clouds and Fogs -- 4.5 Clouds and Climate -- Chapter A APPENDIX A. REFRACTIVE INDICES -- Chapter B APPENDIX B. PHASE FUNCTIONS -- REFERENCES -- INDEX.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Planetology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (522 pages)
    Ausgabe: 1st ed.
    ISBN: 9783662495384
    Serie: Springer Praxis Bks.
    DDC: 535.43
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Editor and Contributors -- Part IRadiative Transfer -- 1 The Discrete Ordinate Algorithm, DISORT for Radiative Transfer -- Abstract -- 1 Introduction -- 2 Equation of Transfer in DISORT -- 2.1 Radiative Transfer Equation Uncoupled in Azimuth -- 3 Discrete Ordinate Approximation-Matrix Formulation -- 4 Discrete Ordinate Approximation-Solution -- 4.1 Homogeneous Solution -- 4.2 Particular Solution -- 4.3 General Solution -- 4.4 Intensities at Arbitrary Angles -- 4.5 Boundary and Interface Conditions -- 4.6 Scaling Transformation -- 5 Flux, Flux Divergence, and Mean Intensity -- 6 Optimizing Efficiency and Accuracy for Intensities -- 6.1 δ-M Transformation -- 6.2 Correction of the Intensity Field -- 7 Numerical Considerations -- 7.1 Computation of Eigenvalues and Eigenfunctions -- 7.2 Numerical Solution for the Constants of Integration -- 7.3 Removable Singularities in the Intensities -- 7.4 Fourier Expansion of the Surface BRDF -- 7.5 ω = 1 Special Case -- 7.6 Simplified Albedo and Transmissivity Computations -- 8 DISORT Test Cases -- 9 A Brief History of DISORT -- 10 Summary -- Acknowledgments -- References -- 2 Community Radiative Transfer Model for Air Quality Studies -- 1 Introduction -- 2 What Are the Common Air Pollutants? -- 2.1 Air Pollutants -- 2.1.1 Ozone -- 2.1.2 Particulate Matter -- 2.1.3 Carbon Monoxide -- 2.1.4 Nitrogen Oxides -- 2.1.5 Sulfur Dioxide -- 2.1.6 Lead -- 3 Satellite Data for Studying Air Quality -- 4 Community Radiative Model -- 4.1 Radiative Transfer Equation and Solver -- 4.2 Atmospheric Transmittance Models -- 4.3 Scattering Properties -- 4.4 Molecules -- 4.5 Aerosols -- 4.6 Clouds -- 4.7 Surface Reflectivity and Emissivity Models -- 5 Aerosol Models -- 5.1 Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). , 5.2 The Community Multi-scale Air Quality (CMAQ) Modeling System -- 5.3 Global Modeling: GOCART in NEMS GFS Aerosol Component (NGAC) -- 5.4 Regional Modeling: CMAQ in National Air Quality Forecasting Capability (NAQFC) -- 6 Satellite Data Assmilation and Air Quality Forecasting -- 7 Discussion -- Acknowledgments -- References -- 3 Analytical Solution of Radiative Transfer Using Cumulant Expansion -- 1 Introduction -- 2 Derivation of Cumulants to an Arbitrary Order -- 3 Gaussian Approximation of the Distribution Function -- 4 Cumulant Solution for Polarized Radiative Transport Equation -- 5 Applications of the Cumulant Solution of Radiative Transfer -- 5.1 Early Photon Tomography (EPT) -- 5.2 Retrieving Parameters of Water Cloud from CALIPSO Data -- 6 Summary -- References -- 4 Radiative Transfer in Spherically and Cylindrically Symmetric Media -- 1 Radiation Fields in Infinite Media Illuminated by a Point Source -- 1.1 Infinite Homogeneous Media with a Planar Source -- 1.2 The Relationship Between Radiation Field Characteristics in an Infinite Medium with Point or Plane Sources -- 1.3 Exact Expressions for the Source Function and the Radiation Intensity in an Infinite Medium Illuminated by an Isotropic Point Source -- 2 The Radiation Field in an Infinite Medium with a Spherical Symmetric Distribution of Sources -- 2.1 The System of Eigenfunctions of the Homogeneous Equation of Radiative Transfer in a Spherically Symmetric Medium -- 2.2 Green's Function for the Radiative Transfer Equation in an Infinite Medium with a Spherically Symmetric Distribution of the Sources -- 3 Radiation Fields in a Sphere and in a Spherical Envelope -- 3.1 Main Methods for Solving Equation of Radiative Transfer in Spherically Symmetric Media -- 3.2 The Integral Equation for the Source Function in the Case of a Sphere. , 3.3 The Structure of Green's Function for Media with Spherical Symmetry -- 3.4 Integral Relations Between the Green's Functions -- 3.5 Eigenfunctions Biorthogonal at the Half Interval of the Variation of the Angular Variable -- 3.6 Coefficients of Reflection and Transmission of Light -- 4 Asymptotic Formulae of the Theory of Radiative Transfer in an Infinite Medium, a Sphere, and a Spherical Shell -- 4.1 The Asymptotic Light Regime in an Infinite Medium Far from a Point Source -- 4.2 The Asymptotic Expression of Green's Function for an Infinite Medium with a Spherically Symmetric Distribution of Sources -- 4.3 Asymptotic Radiation Fields in Outer Layers of a Sphere of Large Optical Radius Far from Sources -- 4.4 The Asymptotic Behavior of the Radiation Field in an Optically Thick Spherical Envelope -- 4.5 The Asymptotic Behavior of the Radiation Field Far Away from a Source in a Medium with a Low True Absorption -- 5 Radiation Fields in Media with Cylindrical Symmetry -- 5.1 Basic Methods for Solving the Problems of the Radiative Transfer in Media with Cylindrical Symmetry -- 5.2 The Radiative Transfer Equation in Media with Cylindrical Symmetry -- 5.3 Eigenfunctions and Eigenvalues of the Homogeneous Radiative Transfer Equation in a Media with Cylindrical Symmetry -- 6 Nonstationary Radiation Fields -- 6.1 Basic Equations of the Theory of Nonstationary Radiative Transfer -- 6.2 Asymptotic of the Nonstationary Radiation Field in Infinite Media -- 7 Concluding Remarks -- Appendix A: The Results of Calculation by Formula (33) -- Appendix B: The Exactness of Approximate Expressions for the Mean Radiation Intensity and the Radiation Flux -- References -- Part IISingle Light Scattering -- 5 The Debye Series and Its Use in Time-Domain Scattering -- Abstract -- 1 Introduction -- 2 Scattering by a Homogeneous Sphere in Lorenz-Mie Theory. , 3 Partial Wave Fresnel Coefficients for Scattering by a Homogeneous Sphere -- 4 Derivation of the Debye Series for Scattering by a Homogeneous Sphere -- 5 Derivation of the Ray Model of Light Scattering Using the Debye Series -- 6 Scattering of a Neumann Beam by a Homogeneous Sphere -- 7 Debye Series for a Scattering by a Coated Sphere and a Multi-layer Sphere -- 7.1 Scattering by a Coated Sphere -- 7.2 Scattering by a Multi-layer Sphere -- 8 Debye Series for a Plane Wave Diagonally Incident on a Cylinder -- 9 Debye Series for a Scattering by a Spheroid -- 9.1 Scattering of Scalar Waves -- 9.2 Scattering of Electromagnetic Waves -- 10 General Description of Time-Domain Scattering -- 11 Time-Domain Scattering and the Ray Limit of the Debye Series -- 12 The Signature of Subtle Scattering Effects in Time-Domain Scattering -- 12.1 Electromagnetic Surface Waves -- 12.2 The Time-Domain Signature of Diffraction -- 13 Summary -- References -- 6 Morphological Models for Inhomogeneous Particles: Light Scattering by Aerosols, Cometary Dust, and Living Cells -- 1 Introduction -- 2 Effective-Medium Approximations -- 3 Encapsulated Light-Absorbing Carbon Aggregates -- 4 Mineral Dust -- 5 Volcanic Ash -- 6 Cometary Dust -- 7 Biological Particles -- Acknowledgements -- Bibliography -- 7 Some Wave-Theoretic Problems in Radially Inhomogeneous Media -- 1 Introduction -- 2 Wave Theory for Piecewise-Homogeneous Spheres -- 3 The Tunneling Analogy -- 4 The Two-Layer Inhomogeneous Sphere -- 4.1 TE Mode -- 4.2 TM Mode -- 4.3 The Potential Function -- 4.3.1 Case 1 and Case 2 -- 5 Conclusion -- Acknowledgments -- References -- 8 Light Scattering and Thermal Emission by Primitive Dust Particles in Planetary Systems -- 1 Introduction -- 2 Models of Dust Agglomerates in Planetary Systems -- 2.1 Artificial Configuration of Constituent Grains. , 2.2 Coagulation Growth of Pristine Constituent Grains -- 3 Light-Scattering Techniques for Dust Agglomerates -- 3.1 T-Matrix Method and Generalized Multiparticle Mie Solution -- 3.2 Discrete Dipole Approximation -- 3.3 Effective Medium Approximations -- 4 Light Scattering by Dust Agglomerates -- 4.1 Single Scattering -- 4.2 Multiple Scattering -- 5 Thermal Emission from Dust Agglomerates -- 5.1 Spectral Energy Distribution -- 5.2 Characteristic Features of Minerals -- 6 Integral Optical Quantities of Dust Agglomerates -- 6.1 Bolometric Albedo -- 6.2 Radiation Pressure -- 6.3 Equilibrium Temperature -- 7 Concluding Remarks -- 8 Summary -- Acknowledgments -- References -- Part IIIPolarimetry -- 9 Polarimetry of Man-Made Objects -- Abstract -- 1 Introduction -- 2 Mueller Matrices of Deterministic and Depolarizing Objects -- 3 Mueller Matrix Polarimetry -- 4 Radar Polarimetry -- 5 Applications of Optical and Radar Polarimetry -- 5.1 Contamination -- 5.1.1 Ocean -- 5.1.2 Chemical-Biological Materials -- 5.2 Urban Objects -- 5.3 Mines -- 5.4 Archaeology -- 5.5 Miscellaneous Man-Made Targets -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Clouds-Remote sensing. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (242 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030386962
    Serie: Springer Series in Light Scattering Series
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- Contributors -- Application of Single and Multiple-Scattering Theories to Analyses of Space-Borne Cloud Radar and Lidar Data -- 1 Introduction -- 2 Single Scattering Properties of Cloud Particles -- 2.1 Discrete Dipole Approximation -- DDA -- 2.2 Scattering Theory Based on Geometric Optics: Physical Optics -- 3 Application of Scattering Theories to Analyze Lidar and Cloud Radar Data -- 3.1 Backscattering Properties of Cloud Particles at Lidar and Radar Wavelengths -- 3.2 Retrieval of Ice Microphysics from Space-Borne Lidar and Radar -- 4 Simulation and Observation of Multiple Scattering Effects from Clouds -- 4.1 Introduction of the PM Approach for Space-Borne Lidar Application -- 4.2 Polarimetric Property of Lidar Multiple Scattering in the VPM -- 4.3 Observation of Lidar Multiple Scattering from Ground-Based Lidar -- 4.4 Observation of Water and Mixed-Phase Clouds with MFMSPL -- 5 Summary and Future Studies -- References -- Airborne Remote Sensing of Arctic Clouds -- 1 Introduction -- 2 Airborne Remote Sensing Instrumentation -- 3 Challenges for Remote Sensing of Arctic Clouds Using Solar Radiation -- 3.1 Mixed-Phase Clouds -- 3.2 Surface Albedo -- 3.3 Horizontal Inhomogeneities and Three-Dimensional Effects -- 4 Retrieval of Cloud Properties Based on Spectral Radiation Measurements -- 4.1 Retrieval of Cloud Thermodynamic Phase -- 4.2 Combined Retrieval of Cloud and Snow Properties -- 5 Retrieval of Cloud Properties Based on Directional Observations -- 6 High Resolution Cloud Spectral Imaging -- 7 Concluding Remarks -- References -- Snow Albedo and Radiative Transfer: Theory, Modeling, and Parameterization -- 1 Introduction -- 2 Snow Radiative Transfer Theory and Modeling -- 2.1 Basic Radiative Transfer Formulation -- 2.2 Snow on Land (Uniformly Refractive Layered Media). , 2.3 Snow on Ice (Non-uniformly Refractive Layered Media) -- 2.4 Other Theories and Models -- 3 Snow Single-Scattering Property Computation -- 3.1 Computational Methods -- 3.2 Snow Single-Scattering Properties -- 4 Snow Albedo Parameterizations -- 4.1 Accounting for Snow Grain Properties -- 4.2 Accounting for Snow Impurities -- 4.3 Accounting for Atmospheric Variables -- 5 Summary, Challenges, and Future Directions -- Appendix -- References -- Spectral Reflectance of Soil -- 1 Introduction -- 2 Reflectance Spectra -- 2.1 Factors Affecting Soil Reflectance Spectra -- 2.2 Bidirectional Reflectance Quantities -- 2.3 Non-lambertian Behavior of Soil Surfaces -- 2.4 Measurements of Soil Bidirectional Reflectance -- 2.5 Modeling of Soil Bidirectional Reflectance -- 3 Soil Albedo -- 3.1 Variation of Soil Albedo -- 3.2 Soil Albedo as a Parameter for Modeling Changes in the Climate of the Earth -- 3.3 Measurements of Diurnal Blue-Sky Albedo Variation of Soils -- 3.4 Equations Predicting Diurnal Blue-Sky Albedo Variation of Soils Taking into Account Their Roughness -- 3.5 Use of Laboratory Data to Predict the Annual Variation of Shortwave Radiation Reflected from Bare Arable Lands Taking into Account Their Roughness -- 4 Concluding Remarks -- References -- Asymptotic Methods in the Theory of Light Scattering by Nonspherical Particles -- 1 Introduction -- 2 Fraunhofer Diffraction -- 2.1 Statement of the Problem -- 2.2 Solution for a Single Obstacle -- 2.3 Randomly Oriented Obstacles -- 2.4 Particular Case of Spherical Particles -- 2.5 Size-Distributed Obstacles -- 2.6 Approximating Formula -- 2.7 Hexagonal Prisms -- 3 Rayleigh-Gans Approximation -- 3.1 Statement of the Problem -- 3.2 Solution for a Single Particle -- 3.3 Randomly Oriented Particles -- 3.4 Approximating Formula -- 3.5 Total Scattering Cross-Section. , 3.6 Chaotically Oriented Cylinder and Size-Distributed Spheres -- 3.7 Inherent Optical Properties -- 4 Wentzel-Kramers-Brillouin (WKB) Approximation -- 4.1 Statement of the Problem -- 4.2 Extinction and Absorption -- 4.3 Scattering Phase Function -- 4.4 Comparison to the Discrete Dipole Approximation -- 5 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Light-Scattering. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (393 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030205874
    Serie: Springer Series in Light Scattering Series
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- UNL-VRTM, A Testbed for Aerosol Remote Sensing: Model Developments and Applications -- 1 Introduction -- 1.1 Current and Future Aerosol Remote Sensing -- 1.2 The Need for a Remote Sensing Testbed -- 2 The UNL-VRTM Forward Model -- 2.1 Definitions of Stokes Parameters -- 2.2 The Vector Radiative Transfer with VLIDORT -- 2.3 Atmospheric Profiles -- 2.4 Gaseous Absorption -- 2.5 Rayleigh Scattering -- 2.6 Aerosol Single Scattering -- 2.7 Surface Reflection Models -- 2.8 Jacobian Capability -- 2.9 Model Benchmarking and Verification -- 3 Optimized Inversion and Information Content Analysis -- 3.1 Maximum a Posteriori (MAP) Solution of an Inverse Problem -- 3.2 Information Theory -- 4 Applications -- 4.1 Spectral Fingerprints of Above-Cloud Smoke -- 4.2 Bi-Modal Aerosol Properties from Polarimetric Data -- 5 Summary and Outlook -- References -- Scattering of Radiation and Simple Approaches to Radiative Transfer in Thermal Engineering and Biomedical Applications -- 1 Introduction -- 2 Diffusion-Based Models for Radiative Transfer in Disperse Systems -- 2.1 Transport Approximation -- 2.2 The Simplest Differential Approximations -- 2.3 Radiation Scattering in Various Applied Problems -- 2.4 Radiative Heat Transfer in a Solid Propellant Rocket Engine -- 2.5 Radiative Heat Transfer in a Severe Accident in a Nuclear Reactor -- 2.6 Radiative Properties of Semi-transparent Dispersed Materials -- 2.7 Shielding of a Space Vehicle from Solar Radiation by Sublimating Particles -- 2.8 Light Scattering in Photothermal Therapy of Human Tissues -- 3 Conclusions -- References -- Bio-optical Properties of Terrestrial Snow and Ice -- 1 Introduction -- 2 Modelling Optical Properties of Cryospheric Algae -- 2.1 General Approach -- 2.2 Cell Size and Shape -- 2.3 Cell Composition -- 3 Empirical Measurements. , 3.1 Empirical Determination of Cellular Optics -- 3.2 Field Spectroscopy -- 4 Remote Sensing -- 5 Outlook -- References -- Accurate Determination of the Size and Mass of Polymers, Nanoparticles, and Fine Bubbles in Water -- 1 Introduction -- 2 Theory -- 2.1 Static Light Scattering -- 2.2 Dynamic Light Scattering -- 3 Experimental -- 3.1 Measurement Apparatus -- 3.2 Sample Preparation -- 3.3 Light-Scattering Measurements -- 4 Applications -- 4.1 Synthetic Polymers -- 4.2 Nanoparticles -- 4.3 Fine Bubbles -- 5 Conclusions -- References -- Radiative Properties of Atmospheric Black Carbon (Soot) Particles with Complex Structures -- 1 Introduction -- 2 Observed BC Particle Structures -- 2.1 Fresh/Bare BC Aggregates -- 2.2 Coated/Aged BC Particles -- 3 Computational Methods for Particle Radiative Properties -- 3.1 Lorenz-Mie (LM) Theory -- 3.2 Rayleigh-Debye-Gans (RDG) Approximation -- 3.3 Finite Difference Time Domain (FDTD) Method -- 3.4 Discrete Dipole Approximation (DDA) -- 3.5 T-matrix Method -- 3.6 Geometric-Optics Surface-Wave (GOS) Method -- 4 Morphological Effects on Radiative Properties -- 4.1 Fresh/Bare BC Aggregates -- 4.2 Coated/Aged BC Particles -- 5 Atmospheric Implications -- 6 Future Directions -- References -- Multiple Scattering of Polarized Light in Plane-Parallel Media: Mueller Matrix Representation and Polarization Parameters in Two Dimensions -- 1 Introduction -- 2 Scattering Geometry -- 3 Monte Carlo Simulation -- 4 Backward Scattering in Isotropic Turbid Media -- 4.1 Scattering Mueller Matrix -- 4.2 Matrix Decompositions and Extracted Polarization Parameters -- 4.3 Effect of Optical Activity -- 5 Forward Scattering in Isotropic Turbid Media -- 5.1 Scattering Mueller Matrix -- 5.2 Polarization Parameters -- 6 Symmetry of the Scattering Mueller Matrix in Anisotropic Media -- 6.1 Calculation Procedure and Conditions. , 6.2 Results: Birefringence Parallel to the Slab Surface -- 6.3 Results: Birefringence Inclined to the Slab Surface -- 6.4 Transformations Due to Scattering Geometry -- 6.5 Symmetry Relationships in the Jones Matrix -- 7 Backward Scattering in Anisotropic Media -- 7.1 Birefringence Parallel to the Slab Surface -- 7.2 Birefringence Inclined to the Slab Surface -- 8 Forward Scattering in Anisotropic Slab Media -- 8.1 Birefringence Parallel to the Slab Surface -- 8.2 Birefringence Inclined to the Slab Surface -- 9 Conclusions -- References -- Speckle Correlation Based Single-Shot Wide-Field Imaging -- 1 Introduction -- 1.1 Holographic Imaging -- 1.2 Ballistic Photon Gating -- 1.3 Phase Conjugation -- 1.4 Wavefront Optimization Through Interference -- 1.5 Transmission Matrix Analysis -- 1.6 Time-Reversed Ultrasonic Encoded Light -- 2 Principle of Speckle Correlation -- 2.1 Memory Effect -- 2.2 Speckle Correlation -- 2.3 Correlation Holography -- 2.4 Spatial Stationarity of Statistical Optical Fields -- 2.5 Interferometric Approach for Phase Retrieval -- 2.6 Polarization Discrimination for Phase Retrieval -- 3 Imaging from the Speckle Using Intensity Correlation and Iterations -- 4 Quantitative Phase Contrast Imaging Through a Scattering Media Using Non-iterative Approach -- 5 Depth Sectioning Behind the Random Scattering Medium -- 6 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Light -- Scattering. ; Radiative transfer. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.
    Materialart: Online-Ressource
    Seiten: 1 online resource (437 pages)
    Ausgabe: 1st ed.
    ISBN: 9783642379857
    Serie: Springer Praxis Bks.
    DDC: 535.43
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- List of Contributors -- Preface -- Part I Light Scattering -- 1 Light scattering by atmospheric mineral dust particles -- 1.1 Introduction -- 1.2 Physical properties of dust particles -- 1.2.1 Composition, structure, and shape -- 1.2.2 Mineral dust size distribution -- 1.3 Light-scattering measurements -- 1.4 Light-scattering modeling -- 1.4.1 Definitions -- 1.4.2 Models with simple homogeneous particles -- 1.4.2.1 Spheres -- 1.4.2.2 Spheroids -- 1.4.2.3 Ellipsoids -- 1.4.2.4 Polyhedra -- 1.4.3 Models with complex anisotropic, and inhomogeneous particles -- 1.4.3.1 Homogeneous, isotropic models -- 1.4.3.2 Inhomogeneous or anisotropic models -- 1.4.4 Impact of morphological details and anisotropy on scattering -- 1.4.4.1 Surface roughness -- 1.4.4.2 Inhomogeneity -- 1.4.4.3 Material anisotropy -- 1.5 Discussion and conclusions -- Acknowledgments -- References -- 2 A review of approximate analytic light-scattering phase functions -- 2.1 Introduction -- 2.2 Scattering phase function as a series expansion -- 2.2.1 Expansion in terms of Legendre polynomials -- 2.2.2 The Rayleigh phase function (RPF) -- 2.2.3 The δ −M phase function approximation -- 2.2.4 Peak truncated phase functions -- 2.3 Parametrized phase functions -- 2.3.1 One-parameter phase functions -- 2.3.1.1 The Henyey-Greenstein phase function (HGPF) -- 2.3.1.2 Combined Henyey-Greenstein (HGPF) and Rayleigh phase function -- 2.3.1.3 The Neer-Sandri phase function (NSPF) -- 2.3.1.4 Kagiwada-Kalaba phase function (KKPF) -- 2.3.1.5 The Schlick phase function -- 2.3.1.6 The binomial phase function -- 2.3.1.7 The delta-hyperbolic phase function -- 2.3.1.8 The transport phase function (TPF) -- 2.3.2 Two-parameter phase functions -- 2.3.2.1 The modified Henyey-Greenstein phase function -- 2.3.2.2 The Gegenbauer kernel phase function (GKPF). , 2.3.2.3 The delta-Eddington phase function -- 2.3.2.4 The Liu phase function (LPF) -- 2.3.2.5 The Draine phase function (DPF) -- 2.3.2.6 Phase function for planetary regoliths -- 2.3.3 Three-parameter phase functions (TPPF) -- 2.3.4 Five-parameter phase function -- 2.3.5 Six-parameter phase function -- 2.4 Analytic phase functions dependent on microphysical particle characteristics -- 2.4.1 Phase functions for small spherical particles -- 2.4.2 Larger particles -- 2.4.3 Zhao phase function (ZPF) -- 2.5 Densely packed particles -- 2.6 Role of phase function in ray tracing by the Monte Carlo method -- 2.7 Distribution-specific analytic phase functions -- 2.7.1 Rayleigh-Gans phase function for modified gamma distribution -- 2.7.2 Junge size distribution -- 2.7.3 Phase function for ice clouds -- 2.8 Concluding remarks -- References -- 3 Scattering of electromagnetic plane waves in radially inhomogeneous media: ray theory, exact solutions and connections with po -- 3.1 Complementary levels of description in light scattering -- 3.2 Scattering by a transparent sphere: ray description -- 3.2.1 The ray path integral -- 3.3 Analysis of specific profiles -- 3.4 The generation of exact solutions for radially inhomogeneous media -- 3.4.1 A summary of the method -- 3.4.2 Specific profiles -- 3.4.2.1 Spherically stratified isotropic media -- 3.4.2.2 Cylindrically stratified isotropic media -- 3.4.3 The non-existence of bound state solutions -- 3.5 Scalar wave scattering by a transparent sphere -- 3.5.1 Morphology-dependent resonances: the effective potential Ul(r) (constant n) -- 3.6 Connection with the scattering matrix -- 3.7 The vector problem: the Mie solution of electromagnetic scattering theory -- 3.8 Conclusion -- Appendix 1: Properties of η(r) and interpretation of the ray path integral -- Appendix 2: Poles and resonances on the k-plane and E-plane. , References -- Part II Remote Sensing -- 4 Spectral dependence of MODIS cloud droplet effective radius retrievals for marine boundary layer clouds -- 4.1 Introduction -- 4.2 Operational MODIS re retrieval algorithm -- 4.3 Spectral dependence of MODIS re retrievals for MBL clouds -- 4.3.1 Geographical pattern -- 4.3.2 Correlation with key cloud parameters -- 4.4 Potential reasons for the spectral difference -- 4.4.1 Random error -- 4.4.2 Vertical cloud structure -- 4.4.3 Cloud droplet size distribution -- 4.4.4 Plane-parallel re bias -- 4.4.5 3D radiative transfer effect -- 4.5 Discussion -- 4.5.1 Which one is better? -- 4.5.2 Cloud regime classification -- 4.6 Outlook of future work -- Acknowledgments -- References -- 5 Remote sensing of above cloud aerosols -- 5.1 Introduction -- 5.2 Above cloud aerosols (ACA), and their role in climate -- 5.2.1 Direct effects -- 5.2.2 Indirect and semi-direct effects -- 5.3 Orbital observations of ACA -- 5.3.1 Passive ultraviolet (UV) observations -- 5.3.1.1 Physical basis -- 5.3.1.2 Sources of uncertainty -- 5.3.2 Passive visible (VIS) near-infrared (NIR) observations -- 5.3.2.1 Physical basis -- 5.3.2.2 Sources of uncertainty -- 5.3.2.3 Ongoing developments -- 5.3.3 Passive hyperspectral observations -- 5.3.3.1 Physical basis -- 5.3.3.2 Sources of uncertainty -- 5.3.4 Passive polarimetric observations -- 5.3.4.1 Physical basis -- 5.3.4.2 Sources of uncertainty -- 5.3.4.3 Ongoing developments -- 5.3.5 Active Lidar observations -- 5.3.5.1 Physical basis -- 5.3.5.2 Sources of uncertainty -- 5.3.5.3 Validation and assessment -- 5.3.5.4 Ongoing developments -- 5.4 Validation with in situ and suborbital observations -- 5.4.1 In situ observations from field campaigns -- 5.4.2 Airborne sunphotometers -- 5.4.3 Active sensors -- 5.4.4 Spectrometers -- 5.4.5 Airborne polarimeters. , 5.4.6 RF assessment using observational data and regional climate models -- 5.5 The future for ACA retrievals -- 5.5.1 Upcoming orbital opportunities -- 5.5.2 Data fusion -- 5.5.3 Recommendations for future instruments -- 5.6 Conclusion -- Acronyms and symbols -- References -- Part III Polarimetry -- 6 Principles of the Mueller matrix measurements -- 6.1 Introduction -- 6.2 Mathematics of the Mueller matrix method -- 6.3 Complete Mueller polarimetry -- 6.4 Physical realizability of the experimental Mueller matrix -- 6.5 Partial Mueller polarimetry -- 6.6 Mueller polarimeter optimization -- 6.7 Conclusions -- Appendix A: Some multiplicative and additive Mueller matrix models -- References -- 7 Reflectance and polarization characteristics of various vegetation types -- 7.1 Introduction -- 7.2 Definitions -- 7.2.1 BRF, BRDF -- 7.2.2 Polarization -- 7.3 Theory and modeling -- 7.4 Field and laboratory measurements -- 7.5 Analysis -- 7.5.1 Special features by species -- 7.6 Discussion on specific remote sensing signatures -- 7.6.1 Heterogeneity, or spatial variations -- 7.6.2 Anisotropy -- 7.6.3 Spectral signature -- 7.6.4 Polarization-any new signals? -- 7.7 Discussion on measurement principles -- 7.8 Conclusions -- Acknowledgements -- References -- Part IV Radiative Forcing -- 8 Diurnally averaged direct aerosol-induced radiative forcing from cloud-free sky field measurements performed during seven regi -- 8.1 Introduction -- 8.2 Definitions of diurnally averaged DARF at the ToAand BoA-levels and within the atmosphere -- 8.2.1 The instantaneous DARF effects at ToAand BoA-levels and in the atmosphere -- 8.2.2 Diurnally averaged DARF and aerosol fractional forcing -- 8.2.3 DARF efficiency -- 8.3 Field measurements and calculations of the diurnally averaged DARF at the ToAand BoA-levels and in the atmosphere, with corr. , 8.3.1 DARF evaluations from the CLEARCOLUMN (ACE-2) field measurements in southern Portugal -- 8.3.2 DARF evaluations from the PRIN-2004 project measurements in southern Italy -- 8.3.3 DARF evaluations obtained from the AEROCLOUDS project measurements in northern Italy -- 8.3.4 DARF evaluations from the Ev-K2-CNR project measurements in Himalaya (Nepal) -- 8.3.5 DARF evaluations from the POLAR-AOD project measurements performed at Arctic and Antarctic sites -- 8.3.6 DARF evaluations from the Aerosols99 measurements in the Atlantic Ocean -- 8.3.7 DARF evaluations from the DOE/ARM/AIOP project field measurements in north-central Oklahoma -- 8.4 Conclusions -- Acknowledgements -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...