GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Ecology . ; Agriculture. ; Evolutionary biology. ; Thermodynamics. ; Conservation biology.
    Description / Table of Contents: C ontents -- Part 1. Theory -- To Understand Economics, Follow the Money: To Understand Ecosystems, Follow the Energy -- Two Views of Ecology, Evolution, and Conservation -- Why I Wrote this Book -- Dualities Still Impede Conservation Efforts -- The Intergovernmental Science-Policy Platform of Biodiversity -- Targets for Conservation -- Evolving Objectives -- Literature Review -- Updating Ecosystem Ecology -- References -- What Can We Learn by Studying Ecosystems that We Can’t Learn from Studying Populations? -- The Predator-Prey Conundrum -- The Serengeti Ecosystem -- Evolution in the “Ecological Theater” -- Predator-Prey Interactions Tell Only Part of the Story -- Evolution in the “Thermodynamic Theater” -- References -- A Thermodynamic Definition of Ecosystems -- Ecosystems in the 20th Century -- Cycling of Strontium-90 -- Cesium-137 in Food Chains -- Recycling of Isotopes in Norwegian Sheep -- Ecological Energetics -- Is it Time to Bury the Ecosystem Concept? -- A Thermodynamic Definition of Life -- A Thermodynamic Definition of Ecosystems -- The Phase Transition between Order and Chaos -- References -- Thermodynamic Characteristics of Ecosystems -- Equilibrium -- The Equilibrium Law -- Thermodynamic Equilibrium -- Open Thermodynamic Systems -- Ecosystems are Thermodynamically Open Non-Equilibrium Systems -- Work is Performed by Non-equilibrium Systems -- Advantage of a Thermodynamically Open System -- 4.3 Ecosystems are Entropic -- 4.4 Ecosystems are Cybernetic -- Cybernetic Systems -- Economic Systems are Cybernetic Ecosystems are Cybernetic -- The Ecosystem Feedback Function -- Indirect vs. Direct Feedback -- Deviation Dampening and Amplifying Feedback -- Set Points -- Ecosystems are Autocatalytic -- Ecosystems have Boundaries -- Ecosystems are Hierarchical -- Hierarchy in Physical Systems -- Hierarchy in Ecological Systems -- Common Currencies -- Macro-and Micro-System Models -- Why an Ecosystem Model that Includes Everything is not Possible -- A Nested Marine Community -- Ecosystems are Deterministic -- Ecosystems are Information Rich -- An Engineering Definition of Information -- Information to Facilitate Exchange -- High Energy Information -- Low Energy Information -- Information Theory -- Genetic Information -- Ecosystems are Non-Teleological -- Criticisms of Ecosystem Models -- References -- Ecosystem Control: A Top-Down View -- Two Ways to Look at Systems -- Composing and Decomposing Trophic Webs -- Decomposers in Soil Organic Matter -- Decomposers in Marshes and Mangroves -- Control of Systems -- Top-Down vs. Bottom-Up -- Top-Down Exogenous Control -- Exogenous Impacts and Stability -- Top-Down Endogenous Control -- Endogenous Control through Nutrient Recycling -- Autocatalysis -- Control of Microbial Activity -- Inhibition of Microbial Activity by Leaf Sclerophylly -- Inhibition of Microbial Activity Chemical Defenses -- Inhibition of Microbial Activity by Ecological Stoichiometry -- The Synchrony Principle -- The Decay Law -- Direct Nutrient Cycling -- The Role of Animals -- Indirect Interactions -- Marine Systems -- Nutrient and Energy Recycling -- Exogenous Control -- Control in Lakes -- Control in Managed Ecosystems -- References -- Ecosystem Control: A Bottom-Up View -- Species as Arbitrageurs of Energy -- Relation Between Rate of Flow and Mass in Hydraulic Systems -- Relation Between Population Biomass and Rate of Energy Flow -- Equilibrium -- Mechanisms of Adjustment -- Adjustments and Climate Change -- Bird Populations -- Dis-equilibrium -- Population Instability vs. Ecosystem Instability -- Control by Interactions: Direct vs. Indirect -- Indirect Interactions -- Direct Interactions -- Predator – Prey -- Mutualisms -- Competition -- Decomposition -- Parasitism and Disease -- Commensalism and Amensalism -- Persistence of Negative Interactions -- References -- Ecosystem Stability -- Background -- A Thermodynamic Definition -- Regime Shift -- Metastability -- Pulsed Stability -- Resistance and Resilience -- Species Richness and Functional Stability -- Species Richness and Cultural Values -- Keystone Species, and Population and Ecosystem Stability -- 7.5.1 Keystone Species in the Yellowstone region of Wyoming -- References -- 8. Case Studies of Ecosystem Control and Stability -- Walden -- “Harmony in Nature” -- Feedback Produces Nature’s “Harmony” -- Feedback Mechanisms -- Perturbations in Amazon Rain Forests -- Top-Down Control -- The San Carlos Project: A Small-scale, Low Intensity, Short Duration Disturbance -- 8.3.2 The Jarí Project: A Large-scale, High Intensity, Long Duration Disturbance -- Bottom-Up Control -- The El Verde Project -- The Long-Term Ecological Research Project in Puerto Rico -- The Lago Guri Island Project -- The Biological Dynamics of Tropical Rainforest Fragments Project -- What have Case Studies Taught us about Stability of Tropical Ecosystems? -- Tropical Ecosystems are Stable -- Tropical Ecosystems are Unstable -- Energy Flow in Tropical Savannas and Rain Forests -- Insects in Tropical Ecosystems -- Application of Lessons to Other Regions -- Relevance to Temperate Zones -- Relevance to Aquatic Ecosystems -- The Experimental Lakes Project (Ecosystem Control of Species) -- Lake Mendota Studies (Species Control of Ecosystems) -- 8.7 Case Studies as Tests of Thermodynamic Theory -- References -- Entropy and Maximum Power -- Entropy -- 9.2 Entropy in a Steel Bar -- Thermodynamic Equilibrium -- Entropic Gradients -- Capturing and Storing Entropy -- Evapotranspiration and Entropy Reduction -- Life is a Balance between Storing and Releasing Entropy -- The Law of Maximum Entropy Production -- Energy for Metabolism as well as Growth -- Unassisted Entropy Capture is a Unique Characteristic of Life.-9.6Entropy Storage by Ecosystems -- 9.6.1 What Causes Entropy to be Stored? -- 9.7 Capturing Pressure -- 9.8 Entropy and Time -- 9.8.1 Time’s Speed Regulator -- Efficiency of Energy Transformations -- Passage of Time for Cats -- 9.9The Maximum Power Principle.-9.10 Optimum Efficiencies for a Truck and its Driver.-9.11 Sustainability -- References -- A Thermodynamic View of Succession -- 10.1 The Population View -- 10.2 The Thermodynamic View -- 10.2.1 Leaf Area Index and Succession -- 10.2.2 Power Output as a Function of Leaf Area Index -- 10.2.3 What Causes Changes in Leaf Area Index? -- 10.2.4 Maximum Entropy Production Principle -- 10.2.5 Successional Ecosystems Move Further from Thermodynamic Equilibrium -- 10.2.6 Entropy Storage by Animals -- 10.3 The Strategy of Ecosystem Development -- A Problem with Odum’s Strategy -- Why Power Output Continues to Increase -- Revised Definition of Maximum Power -- Costs of Ecosystem Stabilization -- Transactional Costs -- Succession, Power Output, and Efficiency -- 10.5.1 Kleiber’s Law -- Are Ecosystems Spendthrifts? -- Interactions Between Species Facilitate Increase in Power Output -- Facilitation -- Tolerance -- Inhibition -- Intermediate Disturbance Hypothesis -- Nutrient Use Efficiency during Succession -- Succession Following Logging vs Following Agriculture -- 10.10 Thermodynamic View of Succession: Implications for Resource Management -- References -- Panarchy -- The Universal Cycle of Systems -- Panarchy -- Thermodynamic Interpretation of the Sacred Rules -- 11.2.1 Growth and Consolidation -- 11.2.2 Collapse -- Renewal -- Sub-systems -- Panarchy over 2 Billion Years of Evolution -- Consolidation, Bureaucracy and System Collapse -- Bureaucracy in Action (Case Studies) -- Case Study: Panarchy in the Georgia Piedmont -- Thermodynamic Interpretation -- References -- 12. A Thermodynamic View of Evolution -- 12.1 Life – A Physicist's View -- 12.1.1 Life is Produced by Capturing Entropy -- 12.1.2 The Origin of Life -- 12.2 Two Approaches to Evolution -- 12.2.1 The Eco-Evo-Devo View -- 12.2.2 The Thermodynamic View -- 12.2.3 Fitness -- 12.2.4 The “Goal” of Evolution -- 12.3 The Relationship between Species and Environment -- 12.3.1 Evolution’s “Theater” -- 12.3.2 Is Evolution Stochastic or Deterministic? -- 12.4 Ecosystem Evolution -- 12.4.1 Succession was the Clue -- 12.4.2 Ecosystems Moved away from Equilibrium -- 12.4.3 Thermodynamic Mechanisms -- 12.4.4 Biological Mechanisms -- 12.4.5 Ecosystem Fitness -- 12.4.6 Ecosystems Evolve One Step at a Time -- 12.5. The Origin of Ecosystems -- 12.5.1 Origin of Feedback Loops -- 12.5.2 Origin of Trophic Levels -- 12.5.3 Why are there Trophic Levels? -- 12.6 The “Goal” of Ecosystem Evolution -- 12.6.1 Conflicting Goals? -- 12.6.2 “Motivations” of Species -- 12.6.3 The Earth Ecosystem -- 12.6.4 Why is there Resistance to the Idea of Ecosystem Evolution? -- 12.6.5 Evolution of Economic Systems -- 12.7 A Thermodynamic Model of Ecosystem Evolution -- 12.7.1 Network Models -- 12.7.2 Increase in Complexity of Trophic Webs -- 12.7.3 Evolution of Trophic Webs -- 12.7.4 Life Moves Ashore -- 12.8 Biodiversity and the Five Great Extinctions -- 12.8.1 The Cretaceous-Tertiary (K-T) Boundary Extinction -- 12.8.2The Amazing Sust...
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXVI, 384 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9783030851866
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Conservation biology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (383 pages)
    Edition: 1st ed.
    ISBN: 9783030851866
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Abbreviations -- Part I: Theory -- To Understand Economics, Follow the Money -- To Understand Ecosystems, Follow the Energy -- Chapter 1: Two Views of Ecology, Evolution, and Conservation -- 1.1 Why I Wrote this Book -- 1.1.1 Dualities Still Impede Conservation Efforts -- 1.2 The Intergovernmental Science-Policy Platform of Biodiversity and Ecosystem Services (IPBES) -- 1.2.1 Targets for Conservation -- 1.3 Evolving Objectives -- 1.3.1 Literature Review -- 1.3.2 Updating Ecosystem Ecology -- References -- Chapter 2: What Can We Learn by Studying Ecosystems that We Can't Learn from Studying Populations? -- 2.1 The Predator-Prey Conundrum -- 2.2 The Serengeti Ecosystem -- 2.2.1 Evolution in the "Ecological Theater" -- 2.2.2 Predator-Prey Interactions Tell Only Part of the Story -- 2.2.3 Evolution in the "Thermodynamic Theater" -- 2.2.3.1 Ruminants -- 2.2.3.2 Adaptation of Ruminants in the Serengeti -- 2.2.3.3 Productivity in the Serengeti -- 2.2.3.4 Fitness Results from Synchronous Evolution -- 2.2.3.5 What Have We Learned? -- References -- Chapter 3: A Thermodynamic Definition of Ecosystems -- 3.1 Ecosystems in the Twentieth Century -- 3.1.1 Cycling of Strontium-90 -- 3.1.2 Cesium-137 in Food Chains -- 3.1.3 Recycling of Isotopes in Norwegian Sheep -- 3.2 Ecological Energetics -- 3.2.1 Is it Time to Bury the Ecosystem Concept? -- 3.2.2 A Thermodynamic Definition of Life -- 3.2.3 A Thermodynamic Definition of Ecosystems -- 3.2.4 The Phase Transition Between Order and Chaos -- References -- Chapter 4: Thermodynamic Characteristics of Ecosystems -- 4.1 Equilibrium -- 4.1.1 The Equilibrium Law -- 4.1.2 Thermodynamic Equilibrium -- 4.2 Open Thermodynamic Systems -- 4.2.1 Ecosystems Are Thermodynamically Open Non-Equilibrium Systems -- 4.2.2 Work Is Performed by Non-equilibrium Systems. , 4.2.3 Advantage of a Thermodynamically Open System -- 4.3 Ecosystems Are Entropic -- 4.4 Ecosystems Are Cybernetic -- 4.4.1 Cybernetic Systems -- 4.4.2 Economic Systems Are Cybernetic -- 4.4.3 The Ecosystem Feedback Function -- 4.4.4 Indirect vs. Direct Feedback -- 4.4.5 Deviation Dampening and Amplifying Feedback -- 4.4.6 Set Points -- 4.5 Ecosystems Are Autocatalytic -- 4.6 Ecosystems Have Boundaries -- 4.7 Ecosystems Are Hierarchical -- 4.7.1 Hierarchy in Physical Systems -- 4.7.2 Hierarchy in Ecological Systems -- 4.7.3 Common Currencies -- 4.7.4 Macro- and Micro-system Models -- 4.7.5 Why an Ecosystem Model that Includes Everything Is Not Possible -- 4.7.6 A Nested Marine Community -- 4.8 Ecosystems Are Deterministic -- 4.9 Ecosystems Are Information Rich -- 4.9.1 An Engineering Definition of Information -- 4.9.2 Information to Facilitate Exchange -- 4.9.3 High Energy Information -- 4.9.4 Low Energy Information -- 4.9.5 Information Theory -- 4.9.6 Genetic Information -- 4.10 Ecosystems Are Non-teleological -- 4.11 Criticisms of Ecosystem Models -- References -- Chapter 5: Ecosystem Control: A Top-Down View -- 5.1 Two Ways to Look at Systems -- 5.2 Composing and Decomposing Trophic Webs -- 5.2.1 Decomposers in Soil Organic Matter -- 5.2.2 Decomposers in Marshes and Mangroves -- 5.3 Control of Systems -- 5.3.1 Top-Down vs. Bottom-Up -- 5.3.2 Top-Down Exogenous Control -- 5.3.3 Exogenous Impacts and Stability -- 5.3.4 Top-Down Endogenous Control -- 5.4 Endogenous Control Through Nutrient Recycling -- 5.4.1 Autocatalysis -- 5.4.2 Control of Microbial Activity -- 5.4.3 Inhibition of Microbial Activity by Leaf Sclerophylly -- 5.4.4 Inhibition of Microbial Activity by Chemical Defenses -- 5.4.5 Inhibition of Microbial Activity by Ecological Stoichiometry -- 5.4.6 The Synchrony Principle -- 5.4.7 The Decay Law -- 5.4.8 Direct Nutrient Cycling. , 5.4.9 The Role of Animals -- 5.5 Marine Systems -- 5.5.1 Nutrient and Energy Recycling -- 5.5.2 Exogenous Control -- 5.6 Control in Lakes -- 5.7 Control in Managed Ecosystems -- References -- Chapter 6: Ecosystem Control: A Bottom-Up View -- 6.1 Species as Arbitrageurs of Energy -- 6.1.1 Relation Between Rate of Flow and Mass in Hydraulic Systems -- 6.1.2 Relation Between Population Biomass and Rate of Energy Flow -- 6.2 Equilibrium -- 6.2.1 Mechanisms of Adjustment -- 6.2.2 Adjustments and Climate Change -- 6.2.3 Bird Populations -- 6.2.4 Dis-equilibrium -- 6.3 Population Instability vs. Ecosystem Instability -- 6.4 Control by Interactions: Direct vs. Indirect -- 6.4.1 Indirect Interactions -- 6.5 Direct Interactions -- 6.5.1 Predator - Prey -- 6.5.2 Mutualisms -- 6.5.3 Competition -- 6.5.3.1 Competition Leads to Complementarity and Formation of Thermodynamic Niches -- 6.5.3.2 Competition in Terrestrial and Marine Systems -- 6.5.3.3 Ecosystem Competition -- 6.5.3.4 Nature, Red in Tooth and Claw -- 6.5.4 Decomposition -- 6.5.5 Parasitism and Disease -- 6.5.6 Commensalism and Amensalism -- 6.5.7 Persistence of Negative Interactions -- References -- Chapter 7: Ecosystem Stability -- 7.1 Background -- 7.2 A Thermodynamic Definition -- 7.2.1 Regime Shift -- 7.2.2 Metastability -- 7.2.3 Pulsed Stability -- 7.2.4 Resistance and Resilience -- 7.3 Species Richness and Functional Stability -- 7.4 Species Richness and Cultural Values -- 7.5 Keystone Species, and Population and Ecosystem Stability -- 7.5.1 Keystone Species in the Yellowstone Region of Wyoming -- References -- Chapter 8: Case Studies of Ecosystem Control and Stability -- 8.1 Walden -- 8.1.1 "Harmony in Nature" -- 8.1.2 Feedback Produces Nature's "Harmony" -- 8.1.3 Feedback Mechanisms -- 8.2 Perturbations in Amazonian Rain Forests -- 8.3 Top-Down Control. , 8.3.1 The San Carlos Project: A Small-scale, Low Intensity, Short Duration Disturbance -- 8.3.1.1 Nutrient Recycling -- 8.3.1.2 Feedback Control: Tree-fall Gaps -- 8.3.1.3 Feedback Control: Shifting Cultivation -- 8.3.1.4 Phosphorus Dynamics -- 8.3.1.5 Tropical Agriculture on Richer Soils -- 8.3.2 The Jarí Project: A Large-scale, High Intensity, Long Duration Disturbance -- 8.4 Bottom-Up Control -- 8.4.1 The El Verde Project -- 8.4.1.1 Perturbation = Ionizing Radiation -- 8.4.1.2 Conclusion -- 8.4.2 The Long-Term Ecological Research Project in Puerto Rico -- 8.4.2.1 Perturbation = Hurricanes -- 8.4.2.2 Conclusion -- 8.4.3 The Lago Guri Island Project -- 8.4.3.1 Perturbation = Elimination of Top Predators -- 8.4.4 The Biological Dynamics of Tropical Rainforest Fragments Project -- 8.4.4.1 Perturbation = Deforestation -- 8.4.4.2 Changes in Intact Forests -- 8.4.4.3 Species Response to Fragmentation -- 8.4.4.4 Conclusion -- 8.5 What Have Case Studies Taught Us About Stability of Tropical Ecosystems? -- 8.5.1 Tropical Ecosystems Are Stable -- 8.5.2 Tropical Ecosystems Are Unstable -- 8.5.3 Energy Flow in Tropical Savannas and Rain Forests -- 8.5.4 Insects in Tropical Ecosystems -- 8.6 Application of Lessons to Other Regions -- 8.6.1 Relevance to Temperate Zones -- 8.6.2 Relevance to Aquatic Ecosystems -- 8.6.3 The Experimental Lakes Project (Ecosystem Control of Species) -- 8.6.4 Lake Mendota Studies (Species Control of Ecosystems) -- 8.7 Case Studies as Tests of Thermodynamic Theory -- References -- Chapter 9: Entropy and Maximum Power -- 9.1 Entropy -- 9.2 Entropy in a Steel Bar -- 9.3 Thermodynamic Equilibrium -- 9.4 Entropic Gradients -- 9.5 Capturing and Storing Entropy -- 9.5.1 Evapotranspiration and Entropy Reduction -- 9.5.2 Life Is a Balance Between Storing and Releasing Entropy -- 9.5.2.1 Potential Entropy -- 9.5.2.2 Entropy and Life. , 9.5.3 The Law of Maximum Entropy Production -- 9.5.4 Energy for Metabolism as Well as Growth -- 9.5.5 Unassisted Entropy Capture Is a Unique Characteristic of Life -- 9.6 Entropy Storage by Ecosystems -- 9.6.1 What Causes Entropy to Be Stored? -- 9.6.2 Entropy Storage by Animals -- 9.7 Capturing Pressure -- 9.8 Entropy and Time -- 9.8.1 Time's Speed Regulator -- 9.8.2 Efficiency of Energy Transformations -- 9.8.3 Passage of Time for Cats -- 9.9 The Maximum Power Principle -- 9.10 Optimum Efficiencies for a Truck and Its Driver -- 9.11 Sustainability -- References -- Chapter 10: A Thermodynamic View of Succession -- 10.1 The Population View -- 10.2 The Thermodynamic View -- 10.2.1 Leaf Area Index and Succession -- 10.2.2 Power Output as a Function of Leaf Area Index -- 10.2.3 What Causes Changes in Leaf Area Index? -- 10.2.4 Maximum Entropy Production Principle -- 10.2.5 Successional Ecosystems Move Further from Thermodynamic Equilibrium -- 10.3 The Strategy of Ecosystem Development -- 10.3.1 A Problem with Odum's Strategy -- 10.3.2 Why Power Output Continues to Increase -- 10.4 Revised Definition of Maximum Power -- 10.4.1 Costs of Ecosystem Stabilization -- 10.4.2 Transactional Costs -- 10.5 Succession, Power Output, and Efficiency -- 10.5.1 Kleiber's Law -- 10.6 Are Ecosystems Spendthrifts? -- 10.7 Interactions Between Species Facilitate Increase in Power Output -- 10.7.1 Facilitation -- 10.7.1.1 Facilitation During Primary Succession -- 10.7.1.2 Facilitation During Secondary Succession -- 10.7.2 Tolerance -- 10.7.3 Inhibition -- 10.8 Intermediate Disturbance Hypothesis -- 10.9 Nutrient Use Efficiency During Succession -- 10.9.1 Succession Following Logging Versus Following Agriculture -- 10.10 Thermodynamic View of Succession: Implications for Resource Management -- References -- Chapter 11: Panarchy -- 11.1 The Universal Cycle of Systems. , 11.1.1 Panarchy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...