GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • 2020-2024  (2)
Document type
Years
  • 2020-2024  (2)
Year
  • 1
    Publication Date: 2024-02-07
    Description: We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, ∼ 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org, last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 ∘C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model–data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Stable water isotopes in polar ice cores are widely used to reconstruct past temperature variations over several orbital climatic cycles. One way to calibrate the isotope–temperature relationship is to apply the present-day spatial relationship as a surrogate for the temporal one. However, this method leads to large uncertainties because several factors like the sea surface conditions or the origin and transport of water vapor influence the isotope–temperature temporal slope. In this study, we investigate how the sea surface temperature (SST), the sea ice extent, and the strength of the Atlantic Meridional Overturning Circulation (AMOC) affect these temporal slopes in Greenland and Antarctica for Last Glacial Maximum (LGM, ∼ 21 000 years ago) to preindustrial climate change. For that, we use the isotope-enabled atmosphere climate model ECHAM6-wiso, forced with a set of sea surface boundary condition datasets based on reconstructions (e.g., GLOMAP) or MIROC 4m simulation outputs. We found that the isotope–temperature temporal slopes in East Antarctic coastal areas are mainly controlled by the sea ice extent, while the sea surface temperature cooling affects the temporal slope values inland more. On the other hand, ECHAM6-wiso simulates the impact of sea ice extent on the EPICA Dome C (EDC) and Vostok sites through the contribution of water vapor from lower latitudes. Effects of sea surface boundary condition changes on modeled isotope–temperature temporal slopes are variable in West Antarctica. This is partly due to the transport of water vapor from the Southern Ocean to this area that can dampen the influence of local temperature on the changes in the isotopic composition of precipitation and snow. In the Greenland area, the isotope–temperature temporal slopes are influenced by the sea surface temperatures near the coasts of the continent. The greater the LGM cooling off the coast of southeastern Greenland, the greater the transport of water vapor from the North Atlantic, and the larger the temporal slopes. The presence or absence of sea ice very near the coast has a large influence in Baffin Bay and the Greenland Sea and influences the slopes at some inland ice core stations. The extent of the sea ice far south slightly influences the temporal slopes in Greenland through the transport of more depleted water vapor from lower latitudes to this area. The seasonal variations of sea ice distribution, especially its retreat in summer, influence the isotopic composition of the water vapor in this region and the modeled isotope–temperature temporal slopes in the eastern part of Greenland. A stronger LGM AMOC decreases LGM-to-preindustrial isotopic anomalies in precipitation in Greenland, degrading the isotopic model–data agreement. The AMOC strength modifies the temporal slopes over inner Greenland slightly and by a little on the coasts along the Greenland Sea where the changes in surface temperature and sea ice distribution due to the AMOC strength mainly occur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...