GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
  • Articles  (4)
  • 2020-2024  (5)
Document type
  • GEOMAR Catalogue / E-Books  (1)
  • Articles  (4)
  • Data  (27)
Publisher
Language
Years
Year
  • 1
    Keywords: seagrass ; tropical ; trait-based approach ; Hochschulschrift
    Description / Table of Contents: Seagrasses are marine flowering plants that inhabit the coastal area forming important ecosystems due to a number of ecosystem services they provide. However, they are subjected to both global and local impacts, including warming water temperatures and eutrophication, which threaten their survival. Despite the fact that the most diverse seagrass meadows are found in the tropical Indo-Pacific Region, there is less information about tropical species than their temperate counterparts. There are, therefore, knowledge gaps in the response of tropical seagrass meadows to environmental drivers and their links to ecosystem functions and services. In the last three decades, trait-based frameworks (TBFs) have advanced different fields of ecological research through establishing novel links between functional traits, environmental drivers and ecosystem functions. A number of concepts have been proposed in order to answer different ecological questions using a functional trait-based perspective. This field of research has been widely developed in terrestrial plants. However, the use of TBFs in seagrass research is currently in its infancy. The goal of this dissertation is the incorporation of TBFs into seagrass ecological research, by establishing novel links between seagrass traits, environmental drivers and ecosystem functions and services. The study site chosen for this work was Unguja Island (Zanzibar Archipelago, Tanzania). Unguja Island is located in the tropical Indo-Pacific region, and is considered one of the hotspots of seagrass biodiversity worldwide. The seagrass meadows in Unguja Island are subjected to a wide range of conditions, from pristine and oligotrophic to heavily impacted and eutrophic. Due to its high seagrass diversity and the variety of conditions under which seagrass survive, Unguja Island is a perfect laboratory for the study of seagrass communities using a TBF. The research questions selected for this dissertation have the goal of understanding the importance of traits at different organizational levels, from their individual responses to environmental drivers, to the effect of traits on the interspecific competition of seagrass species and, lastly, their effect on ecosystem functioning. First, to assess the knowledge gaps in seagrass trait-based research, I carried out a systematic review of the seagrass literature. The analysis showed that seagrass trait research has mostly focused on the effect of environmental drivers on traits (65%), whereas links between traits and functions are less common (33%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (7% of studies). These knowledge gaps in seagrasses indicate ample potential for further research. In order to address these knowledge gaps, I propose a TBF that can help guide future seagrass research. Secondly, the responses of traits of individual seagrass plants of tropical seagrass species (Halophila stipulacea, Cymodocea serrulata, Thalassia hemprichii and seedlings of Enhalus acoroides) were assessed to two environmental drivers: temperature (global) and nutrient enrichment (local). To achieve this aim, a 1-month experiment under laboratory conditions combining two temperature (maximum ambient temperature and current average temperature) and two nutrient (high and low nitrogen and phosphorus concentrations) treatments was conducted. The results of this experiment showed that trait responses are species-specific, and that temperature was a much more significant driver than nutrient enrichment. In the case of the seedlings of E. acoroides, they rely energetically in the reserves within the seedling and increasing temperature resulted in faster seedling development. T. hemprichii and C. serrulata showed an enhanced morphology, while the contrary was true for H. stipulacea. These results highlight the different effects and strategies that co-inhabiting seagrasses have in response to environmental changes. Thirdly, an experiment was developed in the field to test the effects of light shading and trampling due to the farming of Euchema denticulatum on seagrass meadows, an environmental driver endemic to the tropical region. Areas covered by T. hemprichii, H. stipulacea were selected for the building of seaweed farms for 3 months. Light was reduced in the seaweed farm plots by 75 to 90% by the end of a seaweed growth cycle. The responses of seagrass were, again, species-specific. H. stipulacea, despite its capacity for rapid growth, was significantly affected by the combination of shading and trampling under the seaweed farm treatment, while the climax seagrass species T. hemprichii was unaffected. Fourthly, to link individual plant traits to seagrass community level processes, I carried out an observational study in Unguja Island. The goal was to understand how seagrass traits linked to light and nutrient competition affected space preemption among seagrass species under different trophic scenarios. Traits determining the functional strategy of the seagrass showed that there was a size gradient in the seagrass species. When tested the effect of the difference in the functional strategy of species pairs, the probability of preemption was highest for the bigger species, increased when their size difference was higher and was not affected by the eutrophication. This indicated that the competitive interactions among seagrass species were asymmetrical, i.e. a species had a negative effect on another species, while the effect was not reciprocal and the driver behind space preemption was determined by traits related to the size of the seagrass plants. Fifthly, to study the link between seagrass traits and ecosystem functions, sediment cores were collected and compared within seagrass meadows of varying communities across sites of Unguja Island. The goal was to find out which seagrass traits are relevant indicators of carbon storage, and which environmental conditions constrain the storage of carbon in the sediments. Very fine sediments (〈125 μm) were negatively correlated to organic carbon in the sediment. Leaf area index of seagrass was positively correlated to organic carbon content in the sediment, indicating an effect of particle trapping and retention. Root maximum length was the most important functional trait driving carbon storage, suggesting that rooting depth is of fundamental importance for carbon accumulation. To conclude, TBFs can help to push seagrass research forward by the study of traits from the individual plant level, scaling up their effects on the seagrass community, interspecific competition and, lastly, ecosystem functioning. The individual trait responses of seagrass to environmental drivers, through adaptive processes, have fundamental consequences for interspecific competition and, ecosystem function. Changes in seagrass morphology can determine the outcome of interspecific competition for nutrients and light and, therefore, the final configuration of seagrass meadows. These traits of the species in the meadow ultimately determine the capacity of the meadow for carbon storage, which shows a prime example of how traits can affect important seagrass ecosystem functions.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (296 Seiten) , Illustrationen
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-13
    Description: Kelps, the marine forest foundation species, are threatened by ocean warming at their warm distributional edges. To mechanistically investigate inheritance of thermal traits, we assessed thermal tolerance of inbred (selfings) and outbred (crosses) sporophytes of the N-Atlantic kelp Laminaria digitata among isolates from the genetically distinct populations of Helgoland (North Sea) and Spitsbergen (Arctic). First, we investigated the upper thermal tolerance of microscopic sporophytes in a 14-day experiment applying 20–23°C. The upper survival temperature was lower for the Spitsbergen selfing (21°C) than for the Helgoland selfing and the reciprocal crosses (22°C). We then subjected 4–7 cm long sporophytes to a control temperature (10°C), moderate (19°C) and sub-lethal heat stress (20.5°C) to assess metabolic regulation via whole-transcriptome analysis in addition to physiological parameters. Growth and optimum quantum yield decreased similarly in both crosses and the Helgoland selfing at 19 and 20.5°C, while inbred Spitsbergen sporophytes died within seven days at both 19 and 20.5°C. At 10°C, the Spitsbergen selfing showed the highest differential gene expression. Considering only the three surviving lineages at 20.5°C, differential gene expression was 61–78% lower in the crosses compared to the Helgoland selfing, including reduced expression of transcripts related to cellular stress responses. This implies that both intraspecific crosses maintained a growth response similar to the Helgoland selfing with reduced metabolic regulation during sublethal heat stress, indicating subtle heterosis (hybrid vigour) as a beneficial effect of outbreeding. Results are discussed in the frame of mariculture and marine forest restoration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Ocean Sciences Meeting 2022, 2022-02-24-2022-03-04Physiologia Plantarum, 174(1), ISSN: 0031-9317
    Publication Date: 2024-05-07
    Description: Previous field studies in the Southern Ocean (SO) indicated an increased occurrence and dominance of cryptophytes over diatoms due to climate change. To gain a better mechanistic understanding of how the two ecologically important SO phytoplankton groups cope with ocean acidification (OA) and iron (Fe) availability, we chose two common representatives of Antarctic waters, the cryptophyte Geminigera cryophila and the diatom Pseudo-nitzschia subcurvata. Both species were grown at 2°C under different pCO2 (400 vs. 900 μatm) and Fe (0.6 vs. 1.2 nM) conditions. For P. subcurvata, an additional high pCO2 level was applied (1400 μatm). At ambient pCO2 under low Fe supply, growth of G. cryophila almost stopped while it remained unaffected in P. subcurvata. Under high Fe conditions, OA was not beneficial for P. subcurvata, but stimulated growth and carbon production of G. cryophila. Under low Fe supply, P. subcurvata coped much better with OA than the cryptophyte, but invested more energy into photoacclimation. Our study reveals that Fe limitation was detrimental for the growth of G. cryophila and suppressed the positive OA effect. The diatom was efficient in coping with low Fe, but was stressed by OA while both factors together strongly impacted its growth. The distinct physiological response of both species to OA and Fe limitation explains their occurrence in the field. Based on our results, Fe availability is an important modulator of OA effects on SO phytoplankton, with different implications on the occurrence of cryptophytes and diatoms in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-07
    Description: Previous field studies in the Southern Ocean (SO) indicated an increased occurrence and dominance of cryptophytes over diatoms due to climate change. To gain a better mechanistic understanding of how the two ecologically important SO phytoplankton groups cope with ocean acidification (OA) and iron (Fe) availability, we chose two common representatives of Antarctic waters, the cryptophyte Geminigera cryophila and the diatom Pseudo-nitzschia subcurvata. Both species were grown at 2°C under different pCO2 (400 vs. 900 μatm) and Fe (0.6 vs. 1.2 nM) conditions. For P. subcurvata, an additional high pCO2 level was applied (1400 μatm). At ambient pCO2 under low Fe supply, growth of G. cryophila almost stopped while it remained unaffected in P. subcurvata. Under high Fe conditions, OA was not beneficial for P. subcurvata, but stimulated growth and carbon production of G. cryophila. Under low Fe supply, P. subcurvata coped much better with OA than the cryptophyte, but invested more energy into photoacclimation. Our study reveals that Fe limitation was detrimental for the growth of G. cryophila and suppressed the positive OA effect. The diatom was efficient in coping with low Fe, but was stressed by OA while both factors together strongly impacted its growth. The distinct physiological response of both species to OA and Fe limitation explains their occurrence in the field. Based on our results, Fe availability is an important modulator of OA effects on SO phytoplankton, with different implications on the occurrence of cryptophytes and diatoms in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-24
    Description: Contrasting models predict two different climate change scenarios for the Southern Ocean (SO), forecasting either less or stronger vertical mixing of the water column. To investigate the responses of SO phytoplankton to these future conditions, we sampled a natural diatom dominated (63%) community from today’s relatively moderately mixed Drake Passage waters with both low availabilities of iron (Fe) and light. The phytoplankton community was then incubated at these ambient open ocean conditions (low Fe and low light, moderate mixing treatment), representing a control treatment. In addition, the phytoplankton was grown under two future mixing scenarios based on current climate model predictions. Mixing was simulated by changes in light and Fe availabilities. The two future scenarios consisted of a low mixing scenario (low Fe and higher light) and a strong mixing scenario (high Fe and low light). In addition, communities of each mixing scenario were exposed to ambient and low pH, the latter simulating ocean acidification (OA). The effects of the scenarios on particulate organic carbon (POC) production, trace metal to carbon ratios, photophysiology and the relative numerical contribution of diatoms and nanoflagellates were assessed. During the first growth phase, at ambient pH both future mixing scenarios promoted the numerical abundance of diatoms (∼75%) relative to nanoflagellates. This positive effect, however, vanished in response to OA in the communities of both future mixing scenarios (∼65%), with different effects for their productivity. At the end of the experiment, diatoms remained numerically the most abundant phytoplankton group across all treatments (∼80%). In addition, POC production was increased in the two future mixing scenarios under OA. Overall, this study suggests a continued numerical dominance of diatoms as well as higher carbon fixation in response to both future mixing scenarios under OA, irrespective of different changes in light and Fe availability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...