GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Botanical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811566073
    Series Statement: Environmental and Microbial Biotechnology Series
    DDC: 579
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Application of Microbial Biosurfactants in the Food Industry -- 1.1 Surfactants in the Food Industry -- 1.1.1 Food Additives -- 1.1.2 Biosurfactants as Food Preservatives -- 1.1.2.1 Emulsifying Agents -- 1.1.2.2 Antibiofilm Agents -- 1.1.2.3 Antimicrobial Agents -- 1.1.2.4 Antioxidant Agents -- 1.1.3 Industrial Prospects -- References -- 2: Microbial Biosurfactants for Contamination of Food Processing -- 2.1 Introduction -- 2.1.1 Food Contamination -- 2.1.2 Contamination in Food Processing -- 2.2 Microbial Biosurfactants Use in Food Processing -- 2.2.1 Glycolipids -- 2.2.2 Lipopeptides -- 2.3 Application of Microbial Surfactants in Food Processing -- 2.3.1 Biofilm Control -- 2.3.2 Food Preservatives -- 2.4 Concluding Remarks -- References -- 3: Antioxidant Biosurfactants -- 3.1 Introduction -- 3.2 Sources of Biosurfactants -- 3.2.1 Plant-Based Biosurfactants -- 3.2.1.1 Saponins -- Structure, Properties, and Types of Saponins -- Saponins as a Biosurfactants -- 3.2.2 Microbe-Based Biosurfactants -- 3.2.2.1 Types of Microbial Surfactants -- Glycolipids -- Rhamnolipids -- Sophorolipids -- Trehalolipids -- Succinoyl Trehalolipids -- Cellobiose Lipids -- Mannosylerythritol Lipids -- Xylolipids -- Mannose Lipids -- Lipopeptides or Lipoprotein -- Bacillus-Related Lipopeptides -- Surfactin -- Fengycin -- Iturin -- Kurstakins -- Lichenysins -- Pseudomonas-Related Lipopeptides -- Actinomycetes-Related lipopeptides -- Fungal-Related Lipopeptides -- Phospholipids, Fatty Acids (Mycolic Acids), and Neutral Lipids -- Polymeric Surfactants -- Particulate Surfactants -- 3.3 Factors Affecting Biosurfactant Production -- 3.3.1 pH and Temperature -- 3.3.2 Aeration and Agitation -- 3.3.3 Effect of Salt Salinity -- 3.3.4 Optimization of Cultivation Medium -- 3.3.4.1 Effect of Carbon Source -- 3.3.4.2 Effect of Nitrogen Source. , 3.3.4.3 Effect of Carbon to Nitrogen (C/N) Ratio -- 3.4 Screening of Microorganisms for Biosurfactant Production -- 3.4.1 Oil Spreading Assay -- 3.4.2 Drop Collapse Assay -- 3.4.3 Blood Agar Method/Hemolysis Assay -- 3.4.4 Hydrocarbon Overlay Agar -- 3.4.5 Bacterial Adhesion to Hydrocarbon (BATH) Assay -- 3.4.6 CTAB Agar Plate Method/Blue Agar Assay -- 3.4.7 Phenol: Sulfuric Acid Method -- 3.4.8 Microplate Assay -- 3.4.9 Penetration Assay -- 3.4.10 Surface/Interface Activity -- 3.4.11 Emulsification Activity -- 3.5 Antioxidant Properties of Biosurfactant -- 3.6 Conclusion -- References -- 4: Classification and Production of Microbial Surfactants -- 4.1 Introduction -- 4.1.1 Global Biosurfactant Market -- 4.2 Types of Biosurfactants -- 4.2.1 Glycolipids -- 4.2.1.1 Rhamnolipids -- 4.2.1.2 Sophorolipids -- 4.2.1.3 Trehalolipids -- 4.2.2 Lipoproteins and Lipopeptides -- 4.2.3 Fatty Acids -- 4.2.4 Phospholipids -- 4.2.5 Polymeric Biosurfactants -- 4.3 Factors Influencing Biosurfactant Productivity -- 4.3.1 Nutritional Factors -- 4.3.1.1 Carbon Source -- 4.3.1.2 Low-Cost and Waste Substrates -- 4.3.1.3 Nitrogen Source -- 4.3.1.4 Minerals -- 4.3.2 Environmental Factors -- 4.3.3 Cultivation Strategy -- 4.3.3.1 Solid-State Fermentation (SSF) -- 4.3.3.2 Submerged Fermentations (SmF) -- References -- 5: Microbial Biosurfactants and Their Potential Applications: An Overview -- 5.1 Introduction -- 5.2 Classes of Biosurfactants -- 5.2.1 Glycolipids -- 5.2.2 Lipopolysaccharides -- 5.2.3 Lipopeptides and Lipoproteins -- 5.2.4 Phospholipids -- 5.2.5 Fatty Acids -- 5.3 Microbial Production of Biosurfactants -- 5.4 Genes Involved in the Production of Microbial Biosurfactants -- 5.5 Applications -- 5.5.1 In Petroleum Industry -- 5.5.1.1 Mechanism of MEOR -- 5.5.2 Biosurfactant-Mediated Bioremediation -- 5.5.3 In Food Industry -- 5.5.4 In Agriculture. , 5.5.5 In Cosmetics -- 5.5.6 Biosurfactant in Nanotechnology -- 5.5.7 Biosurfactants as Drug Delivery Agents -- 5.5.8 Antimicrobial Activity of Biosurfactants -- 5.5.9 Biosurfactant as Anti-Adhesive Agent -- 5.5.10 In Fabric Washing -- 5.6 Conclusions -- References -- 6: Biodegradation of Hydrophobic Polycyclic Aromatic Hydrocarbons -- 6.1 Introduction -- 6.2 Health Related to PAHs -- 6.2.1 Consequences of Consistent of PAH Exposure by Human -- 6.2.2 Problems Associated with PAHs Via Cytochrome P450 -- 6.3 Biodegradation of PAHs -- 6.3.1 Challenges of Limited Aqueous Solubility in Water -- 6.3.2 Biodegradation Pathway of PAHs -- 6.3.2.1 Naphthalene -- 6.3.2.2 Pyrene -- 6.3.2.3 Fluoranthene -- 6.4 Biosurfactants -- 6.4.1 Biosurfactants -- 6.4.1.1 Glycolipid -- Rhamnolipids -- Cellobiose Lipids -- Sophorolipids -- Trehalolipids -- Mannosylerythritol Lipid -- 6.4.1.2 Lipopeptides -- 6.4.1.3 Phospholipids -- 6.4.2 Polymeric Biosurfactants -- 6.5 Enhanced Biodegradation of PAHs by Biosurfactant -- 6.5.1 Biodegradation in Micelles -- 6.5.2 Biosurfactant Acting as Bioemulsifier -- 6.6 Conclusions -- References -- 7: Surfactin: A Biosurfactant Against Breast Cancer -- 7.1 Introduction -- 7.2 Biosurfactants and Its Types -- 7.2.1 Glycolipids -- 7.2.1.1 Rhamnolipids -- 7.2.1.2 Sophorolipids -- 7.2.1.3 Trehalolipids -- 7.2.2 Lipopeptides -- 7.2.3 Fatty Acids -- 7.2.4 Phospholipids -- 7.2.5 Polymeric Biosurfactant -- 7.3 Surfactin: Structure, Membrane Interaction, Biosynthesis, and Regulation -- 7.3.1 Structure -- 7.3.2 Membrane Interaction -- 7.3.3 Biosynthesis -- 7.3.4 Regulation -- 7.4 Surfactin and Breast Cancer -- 7.5 Conclusion -- References -- 8: Anti-Cancer Biosurfactants -- 8.1 Introduction -- 8.2 Biosurfactants Classification and Structure -- 8.2.1 Mannosylerythritol Lipids (MELs) -- 8.2.2 Succinoyl Trehalose Lipids (STLs) -- 8.2.3 Sophorolipids. , 8.2.4 Rhamnolipids (RLs) -- 8.2.5 Myrmekiosides -- 8.2.6 Cyclic Lipopeptides (CLPs) -- 8.2.6.1 Amphisin, Tolaasin, and Syringomycin CLPs -- 8.2.6.2 Iturin and fengycin CLPs -- 8.2.6.3 Surfactin CLP -- 8.2.7 Rakicidns and Apratoxins -- 8.2.8 Serrawettins -- 8.2.9 Monoolein -- 8.2.10 Fellutamides -- 8.3 Biosurfactants Production -- 8.3.1 Factors Involved in Biosurfactants Production -- 8.3.1.1 Source of Carbon -- 8.3.1.2 Source of Nitrogen -- 8.3.1.3 Effect of Ions -- 8.3.1.4 Physical Factors -- 8.4 Anti-Cancer Activity of Biosurfactants -- 8.4.1 Breast Cancer -- 8.4.2 Lung Cancer -- 8.4.3 Leukemia -- 8.4.4 Melanoma -- 8.4.5 Colon Cancer -- 8.5 Biosurfactants as Drug Delivery System (DDS) -- 8.5.1 Liposomes -- 8.5.2 Niosomes -- 8.5.3 Nanoparticles -- 8.6 Conclusions and Future Challenges -- References -- 9: Biosurfactants for Oil Pollution Remediation -- 9.1 Introduction -- 9.2 Oil Pollution and Its Remediation -- 9.2.1 Oil Pollution -- 9.2.2 Oil Remediation in Polluted Environments -- 9.3 Biosurfactants -- 9.3.1 Synthesis of Biosurfactants -- 9.3.2 Biosurfactant Role in Oil Degradation -- 9.4 Application of Biosurfactants Used for Oil Remediation -- 9.4.1 Oil-Polluted Soil Bioremediation -- 9.4.2 Bioremediation of Marine Oil Spills and Petroleum Contamination -- 9.4.3 Cleaning of Oil Tanks and Pipelines -- 9.4.4 Bioremediation of Heavy Metals and Toxic Pollutants -- 9.5 Conclusion -- References -- 10: Potential Applications of Anti-Adhesive Biosurfactants -- 10.1 Introduction -- 10.2 Biosurfactants That Display Anti-Adhesive Activity -- 10.3 Biofilms and the Adhesion Process: Mechanisms and Effects -- 10.4 Applications of Biosurfactants as Anti-Adhesive Agents -- 10.4.1 Anti-Adhesive Applications in the Biomedical Field -- 10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces -- 10.5 Future Trends and Conclusions -- References. , 11: Applications of Biosurfactant for Microbial Bioenergy/Value-Added Bio-Metabolite Recovery from Waste Activated Sludge -- 11.1 Introduction -- 11.2 Applications of Surfactants for Value-Added Bio-Metabolites Recovery from WAS -- 11.3 Applications of Surfactants for Energy Recovery from WAS -- 11.4 Applications of Surfactants for Refractory Organic Decontamination from WAS -- 11.4.1 PAHs Decontamination -- 11.4.2 Dye Decontamination -- 11.4.3 PCB Decontamination -- 11.5 Applications of Surfactants for WAS Dewatering -- 11.6 Applications of Surfactants for Heavy Metal Removal from WAS -- 11.7 State-of-the-Art Processes to Promote Organics Biotransformation from WAS -- 11.7.1 Co-Pretreatment -- 11.7.2 Interfacing AD with Bioelectrochemical Systems -- 11.7.3 Optimizing Process Conditions -- 11.8 Conclusion -- References -- 12: Application of Microbial Biosurfactants in the Pharmaceutical Industry -- 12.1 Introduction -- 12.2 Mechanism of Interaction of Biosurfactants -- 12.3 Physiochemical Properties -- 12.3.1 Surface Tension -- 12.3.2 Biosurfactant and Self-Assembly -- 12.3.3 Emulsification Activity -- 12.4 Application of Biosurfactants in Pharmaceutical Industry -- 12.4.1 Biosurfactant as an Antitumor/AntiCancer Agent -- 12.4.2 Biosurfactants as Drug Delivery Agents -- 12.4.3 Wound Healing and Dermatological Applications -- 12.4.4 Potential Antimicrobial Application -- 12.4.5 Other Applications in the Pharmaceutical Field -- 12.5 Applications of Surfactin in Pharmaceutical Industry -- 12.6 Concluding Remarks -- References -- 13: Antibacterial Biosurfactants -- 13.1 Introduction -- 13.2 Glycolipids -- 13.2.1 Rhamnolipids -- 13.2.2 Sophorolipids -- 13.2.3 Trehalose Lipids -- 13.3 Lipopeptides -- 13.4 Phospholipids -- 13.5 Antibacterial Activity -- 13.6 Polymeric Surfactants -- 13.7 Fatty Acids -- 13.7.1 Bio-Sources of Fatty Acids. , 13.7.2 Role of Fatty Acids as Antimicrobials.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Raw materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (237 pages)
    Edition: 1st ed.
    ISBN: 9781000596465
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Graphene from Sugar and Sugarcane Extract: Synthesis, Characterization, and Applications -- Chapter 2: Graphene from Honey -- Chapter 3: Graphene from Animal Waste -- Chapter 4: Graphene from Essential Oils -- Chapter 5: Synthesis of Graphene from Biowastes -- Chapter 6: Graphene from Rice Husk -- Chapter 7: Synthesis of Graphene from Vegetable Waste -- Chapter 8: Graphene Oxide from Natural Products and Its Applications in the Agriculture and Food Industry -- Chapter 9: Graphene from Sugarcane Bagasse: Synthesis, Characterization, and Applications -- Chapter 10: Graphene Synthesis, Characterization and Applications -- Chapter 11: Graphene from Leaf Wastes -- Chapter 12: Biosynthesis of Reduced Graphene Oxide and Its Functionality as an Antibacterial Template -- Chapter 13: Graphene and Its Composite for Supercapacitor Applications -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: This book focuses on aerogels and their applications in such areas as energy storage, thermal storage, catalysis, water splitting and environmental remediation.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9781644900994
    Series Statement: Materials Research Foundations Series ; v.84
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Nanocellulose Aerogels -- 1. Introduction -- 2. Production processes of nanocellulose aerogels -- 3. Properties of nanocellulose aerogels -- 4. Applications of nanocellulose aerogels -- 4.1 Materials absorbents -- 4.2 Gas filters and membranes -- 4.3 Packaging materials -- 4.4 Energy storage systems and electrical devices -- 4.5 Thermal insulation and fire-retardant materials -- 4.6 Pharmaceutical and biomedical applications -- 5. Final considerations -- References -- 2 -- Porous Aerogels -- 1. Porous aerogel history -- 2. Aerogel pore classification -- 3. Inorganic-silica based aerogels -- 3.1 Properties of silica-based aerogel -- 3.1.1 Texture -- 3.1.2 Thermal properties -- 3.1.3 Optical properties -- 3.1.4 Entrapment, release, sorption, and storage properties -- 4. Inorganic-nonsilicate aerogels -- 4.1 ZrO2 aerogels -- 4.1.1 ZrO2 aerogels in catalysis -- 4.1.2 ZrO2 aerogels in ceramics -- 4.1.3 ZrO2 aerogels in solid oxide fuel cells -- 4.2 TiO2 aerogels -- 5. Organic-natural/biogels -- 5.1 Polysaccharides aerogels -- 5.2 Chitosan aerogel -- 5.3 Pectin aerogel -- 5.4 Alginate aerogel -- 5.5 κ -Carrageenan aerogel -- 5.6 Starch aerogel -- 5.7 Curdlan aerogel -- 5.8 Cellulose aerogels -- 5.8.1 Cellulose aerogel monoliths -- 5.8.2 Nanostructured cellulose filaments in textile -- 6. Resorcinol-formaldehyde aerogels -- 7. Composite aerogels -- 7.1 Polymer-crosslinked aerogels -- 7.2 Effect of polymer addition on aerogel fragility -- 8. Exotic aerogels -- 8.1 Chalcogenide aerogels -- 8.1.1 Chalcogenide aerogels formation by thiolysis: GeS2 -- 8.1.2 Chalcogenide aerogels formation by cluster-linking -- 8.1.3 Chalcogenide aerogels formation by nanoparticle assembly -- 9. Conducting polymer aerogel -- 9.1 Conducting polymer aerogels- A property prospective -- 9.1.1 PEDOT aerogels. , 9.1.2 Polypyrrole (Ppy) aerogels -- 9.1.3 Polyaniline (PANi) aerogels -- 10. Sonogels -- 11. Graphene aerogel -- 11.1 Preparation of reduced graphene oxide aerogels -- 12. Carbon nanotubes (CNTs) aerogel -- 13. Hybrid aerogel -- 13.1 Class-I hybrid composites -- 13.2 Class-II hybrid composite -- 14. Application of porous aerogel -- 14.1 Thermal insulation -- 14.2 Removal of pollutants -- 14.3 Elimination of solid particle from gases -- 14.4 CO2 capture -- 14.5 Volatile organic compounds/catalysis -- 14.6 Water treatment -- 14.6.1 Oils in water -- 14.6.2 Wastewater and brackish water treatment -- 14.7 Biomedical applications -- 14.7.1 Aerogels for the administration of medicines -- 14.7.2 Tissue engineering -- 14.7.3 Biosensing -- References -- 3 -- Hybrid Silica Aerogel -- 1. Introduction -- 2. Hybrid silica aerogel -- 2.1 Polymer-silica aerogel -- 2.2 Biomolecules-silica aerogel -- 2.3 Graphene-silica aerogel -- 3. Final remarks -- Acknowledgements -- References -- 4 -- Silica Aerogel -- 1. Introduction -- 2. Synthesis methodology -- 2.1 Bare silica aerogels -- 2.2 Modified silica aerogels -- 3. Physico-chemical properties and applications -- 3.1 Thermal insulating application -- 3.2 Optical property application -- 3.3 Electronic application -- 3.4 Acoustic insulation applications -- 3.5 Biomedical applications -- 3.6 Environmental applications -- 3.7 Others applications -- 3.7.1 Space and detector -- 3.7.2 Oil spill clean-up -- 3.7.3 Aerospace -- Conclusions and future prospects -- References -- 5 -- Carbon Aerogels -- 1. Introduction -- 2. Types of carbon aerogels -- 2.1 Low flexible-carbon aerogel -- 2.2 Super flexible-carbon aerogel -- 2.3 Carbon nano tube aerogels -- 2.4 Graphene nano aerogel -- 2.5 Nano-diamond aerogel -- 2.6 Ni-doped carbon aerogel -- 2.7 Pt, Pd, Ag and Ru-doped carbon aerogel -- 2.8 Ce, Zr-based carbon aerogel. , 3. General characteristics and properties -- 3.1 Bulk density and porosity -- 3.2 Backbone density -- 3.3 Backbone connectivity -- 3.4 Pore connectivity -- 3.5 Pore size -- 3.6 Thermal properties -- 3.7 Electrical properties -- 3.8 Electrochemical properties -- 3.9 Mechanical properties -- 3.10 Gas-transport properties -- 3.11 Optical properties -- 4. Applications -- 4.1 Electrochemical field -- 4.2 Hydrogen storage -- 4.3 Catalyst support -- 4.4 Thermal insulation -- 4.5 Adsorbent for waste water treatment -- 4.6 Photocatalyst for waste water treatment -- 4.7 Sensor application -- Conclusions -- References -- 6 -- Magnetic Aerogels -- 1. Introduction -- 2. Cellulose magnetic aerogels -- 3. Magnetic graphene aerogel -- 4. Carbon magnetic aerogel -- 5. Magnetic silica aerogels -- 6. Magnetic pectin aerogel -- Conclusions -- Acknowledgements -- References -- 7 -- Properties of Aerogels -- 1. Introduction -- 2. Structure -- 3. Thermal properties -- 3.1 Silica aerogels -- 3.2 Organic and polymeric aerogels -- 3.3 Carbon aerogels -- 4. Electrical properties -- 4.1 Aerogels with low conductivity -- 4.2 Low dielectric constant materials -- 4.3 Aerogels with high conductivity -- 5. Optical properties -- 5.1 Radiators in Cherenkov counters -- 5.2 Fiber optics -- 5.3 Non reflective materials -- 6. Mechanical properties -- 7. Acoustic properties -- 8. Biocompatibility -- Conclusion -- Acknowledgements -- References -- 8 -- Tailor-Made Aerogels -- 1. Introduction -- 2. Existing and potential applications of aerogels -- 2.1 Pore engineering -- 2.2 Customizable surface and coating -- 2.3 Hybrid aerogels (HAgs): Influence of the sol-gel process on final properties -- 3. Applications of Tailor-made aerogels -- Conclusions -- Acknowledgments -- References -- 9 -- Aerogels Envisioning Future Applications -- 1. Introduction -- 2. Future applications of bioaerogels. , 2.1 Bioaerogels applied as functional foods -- 2.2 Bioaerogels applied as thickeners and stabilizers -- 2.3 Bioaerogels applied as medicines and scaffolding in tissue repair -- 3. Future applications of polymeric aerogel -- 3.1 Polymeric aerogel as impact absorbing materials -- 3.2 Polymeric aerogels used as catalyst supports -- 3.3 Polymeric aerogels can be used as aerospace components -- 4. Future applications of carbon aerogel -- 4.1 Future applications of carbon aerogels as photocatalytic components, electrodes and supercapacitor -- 4.2 Materials against electromagnetic interference, lipid adsorbents and scaffolds for polymers -- 5. Future applications of inorganic aerogels -- 5.1 Inorganic aerogels used as fuel cells -- 5.2 Inorganic aerogels used as catalysts -- Conclusion -- Acknowledgements -- The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and National Council of Scientific and Technological Development (CNPq) for funding this research. -- References -- 10 -- Recent Patents on Aerogels -- 1. Introduction -- 2. Applications -- 2.1 Patents on aerogel generators(WO 2004/022242 Al) -- 2.2 Aerogel blanket and its production (PCT/US2014/022919) -- 2.3 Cellulose aerogels PCT/GB2010/051542 -- 2.4 Some miscellaneous patents -- Acknowledgments -- References -- 11 -- State-of-the-Art and Prospective of Aerogels -- 1. Introduction -- 2.1 Synthesis of aerogels -- 3. State-of-the-art of aerogel -- 3.1 State-of-the-art properties of aerogel -- 3.2 State-of-the-art of preparation of aerogel -- 4. Future prospective of aerogel -- 4.1 Thermal insulation -- 4.2 Drug delivery -- 4.3 Energy storage device -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents theoretical insights, characterization tools and mechanisms of green corrosion inhibitors.
    Type of Medium: Online Resource
    Pages: 1 online resource (242 pages)
    Edition: 1st ed.
    ISBN: 9781644901052
    Series Statement: Materials Research Foundations Series ; v.86
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Theoretical Insights in Green Corrosion Inhibitors -- 1. Introduction -- 2. Theoretical methods used in green corrosion inhibitors -- 2.1 Quantum chemistry methods -- 2.2 Quantitative structure-activity relationships -- 2.3 Molecular dynamics simulation -- 3. The progress of theoretical study in green corrosion inhibitors -- 3.1 The behavior of green corrosion inhibitor studied by combination of quantum chemistry and QSAR -- 3.1.1 Carbon steel inhibitors -- 3.1.2 Copper inhibitors -- 3.2 The performance of green corrosion inhibitor studied by combination of molecular simulation and quantum chemistry -- 3.2.1 Carbon steel inhibitor -- 3.2.2 Aluminum inhibitors -- 3.2.3 Copper inhibitors -- 3.3 The behavior of green corrosion inhibitor studied by combination of molecular simulation, quantum chemistry and QSAR -- 3.3.1 Carbon steel inhibitors -- 3.3.2 Copper inhibitors -- Conclusions -- Acknowledgments -- References -- 2 -- Effect of Natural Sources on the Corrosion Inhibition -- 1. Introduction -- 2. Green corrosion inhibitors -- 2.1 Protection of iron based surfaces via green corrosion inhibitors -- 2.1.1 Protection of iron surfaces via green corrosion inhibitors -- 2.1.2 Protection of mild steel surfaces via green corrosion inhibitors -- 2.1.3 Protection of steel surfaces via green corrosion inhibitors -- 2.1.4 Protection of carbon steel surfaces via green corrosion inhibitors -- 2.1.5 Protection of steel rebar surfaces via green corrosion inhibitors -- 2.2 Protection of aluminum surfaces via green corrosion inhibitors -- 2.3 Protection of copper surfaces via green corrosion inhibitors -- 2.4 Protection of tin surfaces via green corrosion inhibitors -- 2.5 Green corrosion inhibitors resources -- 3. Anti-corrosion mechanism (for natural inhibitors). , 3.1 Anodic, cathodic and mixed type inhibition -- 4. Corrosion inhibitors testing -- 5. Economic and industrial opportunities -- References -- 3 -- Green Inhibitors for Biocorrosion and Prevention -- 1. Introduction -- 1.1 The portability of the metal to the corrosion -- 1.2 The factors affecting the speed of corrosion -- 1.3 Types of corrosions -- 1.3.1 Pure chemical corrosion -- 1.3.2 Electrochemical corrosion -- 1.3.3 Homogeneous (general) corrosion -- 1.3.4 Local corrosion -- 1.3.5 Stress - corrosion cracking -- 1.3.6 Galvanic corrosion -- 1.3.7 Erosion corrosion (EC) -- 1.3.8 Crevice corrosion -- 1.3.9 Pitting corrosion (PC) -- 1.3.10 Exfoliation corrosion -- 1.3.11 Selective leaching -- 1.3.12 Nonmetallic corrosion -- 1.3 Corrosion of cement -- 1.5 Corrosion of organic materials -- 1.6 Environment factors -- 1.6.1 Effect of oxygen and oxidants -- 1.6.2 Effect of pH -- 1.6.2 Effect of anions and cations -- 1.7 Anti-corrosion methods -- 1.7.1 The green impediments for corrosion -- 1.7.2 Determination of green corrosion inhibitors based on ionic fluids -- 1.7.3 Corrosion suppressions from the biological waste -- Conclusion -- References -- 4 -- Electrochemical Studies of Green Corrosion Inhibitors -- 1. Introduction -- 2. Corrosion inhibitors -- 2.1 Green corrosion inhibitors -- 2.1.1 Natural products -- 2.1.2 Amino acids -- 2.1.3 Rare earth metal compounds -- 2.1.4 Recently used green inhibitors -- 3. Characterization techniques -- 3.1 Polarization methods -- 3.1.1 Linear polarization resistance method -- 3.1.2 Potentiodynamic-galvanodynamic polarization -- 3.1.3 Cyclic potentiodynamic polarization -- 3.1.4 Cyclic galvano-staircase polarization -- 3.1.5 Conversion of Icorr (from polarization methods) to corrosion rates -- 3.1.6 Limitations associated with polarization methods -- 3.2 Electrochemical impedance spectroscopy (EIS). , 3.2.1 Interpretation of results (Nyquist & -- Bode plots) -- 3.2.2 Equivalent circuits -- 3.3 Electrochemical Noise (EN) measurements -- 3.4 Electrochemical Quartz Crystal Microbalance (EQCM) -- Concluding remark -- References -- 5 -- Green Corrosion Inhibitors for Technological Applications -- 1. Introduction -- 2. Green corrosion inhibitors -- 3. Technological applications of green corrosion inhibitors -- 3.1 Oil and gas sector -- 3.2 Reinforced concrete -- 3.3 Acid pickling industry -- 3.4 Coatings -- 3.5 Aircraft industry -- 3.6 Water industry -- Conclusion -- Acknowledgment -- References -- 6 -- Pyrazine Derivatives as Green Corrosion Inhibitors -- 1. Introduction -- 2. Pyrazine and its derivative as prominent corrosion inhibitor for metals and alloys in corrosive media -- 3. Adsorption mechanism -- Further aspects -- Conclusion -- Abbreviations -- Acknowledgement -- References -- 7 -- Biological Corrosion Inhibitors for Concrete -- 1. Introduction -- 2. Biological Corrosion Inhibitors -- 2.1 Microbial -- 2.1.1 Bacterial -- 2.1.1.1 Ureolytic -- 2.1.1.2 Non-ureolytic -- 2.1.2 Nitrate reducing bacteria -- 2.1.3 Biomolecules -- 2.1.4 Deoxyribonucleic acid (DNA) -- 2.1.5 Mussel adhesive proteins -- 2.1.6 Fungus -- 2.2 Botanical -- 2.2.1 Extract of tree/plant leaves -- 2.2.2 Bark extract of trees/plants -- 2.2.3 Seeds or grains -- 2.2.4 Plant roots extracts -- 2.2.5 Plants mucilage -- 2.2.6 Algae -- 3. Comparison -- Conclusion -- References -- 8 -- Green Corrosion Inhibitor for Electronics -- 1. Introduction -- 2. Causes and factors for corrosion in electronics -- 2.1 Contaminant gases affect the manufacturing areas -- 2.2 Other problems faced in manufacturing process -- 2.3 Effects of ammonia -- 2.4 Effects of ozone, boron and other volatile organic compounds -- 2.5 Airborne contamination in various sector -- 2.5.1 Telecom industry. , 2.5.2 Distributed control system (DCS) -- 2.5.3 Data centers -- 3. Metals or specific alloys component for electronics -- 4. Electronic component susceptibility towards corrosion and failure analysis -- 4.1 Printed circuit board -- 4.2 Contact and connector -- 4.2.1 Pore corrosion in electrical contacts -- 4.2.2 Fretting corrosion of electronic connectors -- 4.3 Integrated circuits -- 4.4 Solder corrosion: the corrosive effect of soldering flux -- 4.5 Hermetic packages -- 5. Reliability and cleanliness -- 6. Electronics corrosion protection -- 7. Vapor phase corrosion inhibitor (VPCI) technology -- 8. Vapor pressure measurement by various methods -- 8.1 Regnault dynamic method -- 8.2 Boiling point determination method -- 8.3 Knudsen effusion method -- 8.4 Microbalance method -- 8.5 Torsion effusion method -- 9. Effect of temperature on the vapor pressure -- 10. Effect of pH -- 11. Types of vapor phase corrosion inhibitors (VPCI) -- 12. Analysis of corrosion by different method -- 12.1 Vapor pressure determination -- 12.2 Weight loss method -- 12.3 Esckhe method -- 12.4 Salt spray method -- 13. Advantages of VPCI -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Polysaccharides-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (800 pages)
    Edition: 1st ed.
    ISBN: 9781119711391
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods -- 1.1 Introduction -- 1.1.1 Gel Composition from A. vera -- 1.2 Applications of A. vera Mucilaginous Gel or Fractions -- 1.3 Aloe vera Gel Processing -- 1.3.1 Obtaining Polysaccharide Fraction or Acemannan -- 1.4 Analytical Methods Applied -- 1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars -- 1.4.2 Analytical Techniques -- 1.4.2.1 Chromatography Analysis -- 1.4.2.2 Infrared Spectroscopy (IR) -- 1.4.2.3 Nuclear Magnetic Resonance Spectroscopy -- 1.4.2.4 Mass Spectrometry -- 1.4.2.5 Ultraviolet-Visible Spectroscopy -- 1.4.2.6 Comprehensive Microarray Polymer Profiling -- 1.5 Conclusion -- References -- 2 Cell Wall Polysaccharides -- 2.1 Introduction to Cell Wall -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.2 Hemicellulose -- 2.2.2.1 Xyloglucan -- 2.2.2.2 Xylans -- 2.2.2.3 Mannans -- 2.2.3 Callose -- 2.2.4 Pectic Polysaccharides -- 2.2.4.1 Homogalacturonan (HG) -- 2.2.4.2 Arabinan -- 2.3 Algal Cell Wall Polysaccharides -- 2.3.1 Alginates -- 2.3.2 Sulfated Galactans -- 2.3.3 Fucoidans -- 2.4 Fungal Cell Wall Polysaccharides -- 2.4.1 Glucan -- 2.4.2 Chitin and Chitosan -- 2.5 Bacterial Cell Wall Polysaccharides -- 2.5.1 Peptidoglycan -- 2.5.2 Lipopolysaccharides -- References -- 3 Marine Polysaccharides: Properties and Applications -- 3.1 Introduction -- 3.2 Polysaccharide Origins -- 3.3 Properties -- 3.3.1 Cellulose -- 3.3.2 Chitosan -- 3.3.3 Alginate -- 3.3.4 Carrageenan -- 3.3.5 Agar -- 3.3.6 Porphyran -- 3.3.7 Fucoidan -- 3.3.8 Ulvan -- 3.3.9 Exopolysaccharides From Microalgae -- 3.4 Applications of Polysaccharides -- 3.4.1 Biomedical Applications -- 3.4.1.1 Cellulose -- 3.4.1.2 Chitosan. , 3.4.1.3 Alginate -- 3.4.2 Food Applications -- 3.4.2.1 Cellulose -- 3.4.2.2 Chitosan -- 3.4.2.3 Alginates -- 3.4.2.4 Carrageenan -- 3.4.2.5 Agar -- 3.4.3 Pharmaceutical and Nutraceutical Applications -- 3.4.3.1 Cellulose -- 3.4.3.2 Chitosan -- 3.4.3.3 Alginate -- 3.4.3.4 Carrageenan -- 3.4.3.5 Porphyran -- 3.4.3.6 Fucoidan -- 3.4.4 Agriculture -- 3.5 Conclusions -- References -- 4 Seaweed Polysaccharides: Structure, Extraction and Applications -- 4.1 Introduction -- 4.1.1 Agar -- 4.1.2 Carrageenan -- 4.1.3 Alginate (Alginic Acid, Algin) -- 4.1.4 Fucoidan -- 4.1.5 Laminaran -- 4.1.6 Ulvan -- 4.2 Conclusion -- References -- 5 Agars: Properties and Applications -- 5.1 History and Origin of Agar -- 5.1.1 Agarophytes Used in Agar Manufacturing -- 5.2 Physical Properties of Agar Producing Seaweeds -- 5.3 Agar Manufacturing -- 5.3.1 Types of Agar Manufacturing -- 5.3.1.1 Freeze-Thaw Method -- 5.3.1.2 Syneresis Method -- 5.4 Structure of Agar -- 5.5 Heterogeneity of Agar -- 5.6 Physico-Chemical Characteristics of Agar -- 5.7 Chemical Characteristics of Agar -- 5.8 Factors Influencing the Characteristics of Agar -- 5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar -- 5.8.2 Synergies and Antagonisms of Agar Gels -- 5.9 Uses of Agar in Various Sectors -- 5.9.1 Applications of Agar in Food Industry -- 5.9.2 Application of Agar in Harvesting Insects and Worms -- 5.9.3 Vegetable Tissue Culture Formulations -- 5.9.4 Culture Media for Microbes -- 5.9.5 Industrial Applications of Agar -- 5.10 Conclusion and Discussion -- References -- 6 Biopolysaccharides: Properties and Applications -- 6.1 Structure and Classification of Biopolysaccharides -- 6.1.1 Structure -- 6.1.2 Classification -- 6.1.3 Structural Characterization Techniques -- 6.2 Uses and Applications of Biopolysaccharides -- 6.2.1 Functional Fibers -- 6.2.2 Biomedicine. , 6.2.2.1 Tissue Engineering -- 6.2.2.2 Wound Healing -- 6.2.2.3 Drug Loading and Delivery -- 6.2.2.4 Therapeutics -- 6.2.3 Cosmetics -- 6.2.4 Foods and Food Ingredients -- 6.2.5 Biofuels -- 6.2.6 Wastewater Treatment -- 6.2.7 Textiles -- 6.3 Conclusion -- References -- 7 Chitosan Derivatives: Properties and Applications -- 7.1 Introduction -- 7.2 Properties of Chitosan Derivatives -- 7.2.1 Physiochemical Properties -- 7.2.2 Functional Properties -- 7.2.3 Biological Properties of Chitosan -- 7.3 Applications of Chitosan Derivatives -- 7.3.1 Anticancer Agents -- 7.3.2 Bone Tissue Material Formation -- 7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance -- 7.3.4 Drug Delivery -- 7.3.5 Chromatographic Separations -- 7.3.6 Waste Management -- 7.3.7 Food Industry -- 7.3.8 In Cosmetics -- 7.3.9 In Paint as Antifouling Coatings -- 7.4 Conclusions -- Acknowledgement -- References -- 8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco -- 8.1 Introduction -- 8.2 Nador Lagoon: Situation and Characteristics -- 8.3 Seaweed -- 8.4 Polysaccharides in Seaweed -- 8.5 Algae Polysaccharides in Nador Lagoon's Seaweed -- 8.5.1 C. prolifera -- 8.5.1.1 Sulfated Galactans -- 8.5.2 U. rigida & -- E. intestinalis -- 8.5.2.1 Ulvan -- 8.5.3 C. adhaerens, C. bursa, C. tomentosum -- 8.5.3.1 Sulfated Arabinans -- 8.5.3.2 Sulfated Arabinogalactans -- 8.5.3.3 Mannans -- 8.6 Conclusion -- References -- 9 Salep Glucomannan: Properties and Applications -- 9.1 Introduction -- 9.2 Production -- 9.3 Composition and Physicochemical Structure -- 9.4 Rheological Properties -- 9.5 Purification and Deacetylation -- 9.6 Food Applications -- 9.6.1 Beverage -- 9.6.2 Ice Cream and Emulsion Stabilizing -- 9.6.3 Edible Film/Coating -- 9.6.4 Gelation -- 9.7 Health Benefits -- 9.8 Conclusions and Future Trends -- References. , 10 Exudate Tree Gums: Properties and Applications -- 10.1 Introduction -- 10.1.1 Gum Arabic -- 10.1.2 Gum Karaya -- 10.1.3 Gum Kondagogu -- 10.1.4 Gum Ghatti -- 10.1.5 Gum Tragacanth -- 10.1.6 Gum Olibanum -- 10.2 Nanobiotechnology Applications -- 10.3 Minor Tree Gums -- 10.4 Conclusions -- Acknowledgment -- References -- 11 Cellulose and its Derivatives: Properties and Applications -- 11.1 Introduction -- 11.2 Main Raw Materials -- 11.3 Composition and Chemical Structure of Lignocellulosic Materials -- 11.4 Cellulose: Chemical Backbone and Crystalline Formats -- 11.5 Cellulose Extraction -- 11.5.1 Mechanical Methods -- 11.5.2 Chemical Methods -- 11.6 Cellulose Products and its Derivatives -- 11.7 Main Applications -- 11.8 Conclusion -- References -- 12 Starch and its Derivatives: Properties and Applications -- 12.1 Introduction -- 12.2 Physicochemical and Functional Properties of Starch -- 12.2.1 Size, Morphology and Crystallinity of Starch Granules -- 12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules -- 12.2.3 Solubility and Swelling Capacity of Starch -- 12.2.4 Gelatinization and Retrogradation of Starch -- 12.2.5 Birefringence and Glass Transition Temperature of Starch -- 12.2.6 Rheological and Thermal Properties of Starch -- 12.2.7 Transmittance and Opacity of Starch -- 12.2.8 Melt Processability of Starch -- 12.3 Modification of Starch -- 12.3.1 Physical Modification of Starch -- 12.3.2 Chemical Modification of Starch -- 12.3.3 Dual Modification of Starch -- 12.3.4 Enzymatic Modification of Starch -- 12.3.5 Genetic Modification of Starch -- 12.4 Application of Starch and its Derivatives -- 12.4.1 In Food Industry -- 12.4.2 In Paper Industry -- 12.4.3 Starch as Binders -- 12.4.4 In Detergent Products -- 12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics. , 12.4.6 In Pharmaceutical and Cosmetic Industries -- 12.4.7 As Industrial Raw Materials -- 12.4.8 As Adsorbents for Environmental Applications -- 12.4.9 As Food Packaging Materials -- 12.4.10 In Drug Delivery -- 12.4.11 As Antimicrobial Films and Coatings -- 12.4.12 In Advanced Functional Materials -- 12.5 Conclusion -- References -- 13 Crystallization of Polysaccharides -- 13.1 Introduction -- 13.2 Principles of Crystallization of Polysaccharides -- 13.3 Techniques for Crystallinity Measurement -- 13.4 Crystallization Behavior of Polysaccharides -- 13.4.1 Cellulose -- 13.4.2 Chitosan and Chitin -- 13.4.3 Starch -- 13.5 Polymer/Polysaccharide Crystalline Nanocomposites -- 13.6 Conclusion -- References -- 14 Polysaccharides as Novel Materials for Tissue Engineering Applications -- 14.1 Introduction -- 14.2 Types of Scaffolds for Tissue Engineering -- 14.3 Biomaterials for Tissue Engineering -- 14.4 Polysaccharide-Based Scaffolds for Tissue Engineering -- 14.4.1 Alginate-Based Scaffolds -- 14.4.2 Chitosan-Based Scaffolds -- 14.4.3 Cellulose-Based Scaffolds -- 14.4.4 Dextran and Pullulan-Based Scaffolds -- 14.4.5 Starch-Based Scaffolds -- 14.4.6 Xanthan-Based Scaffolds -- 14.4.7 Glycosaminoglycans-Based Scaffolds -- 14.5 Current Challenges and Future Perspectives -- Acknowledgements -- References -- 15 Structure and Solubility of Polysaccharides -- 15.1 Introduction -- 15.2 Polysaccharide Structure and Solubility in Water -- 15.3 Solubility and Molecular Weight -- 15.4 Solubility and Branching -- 15.5 Polysaccharide Solutions -- 15.6 Conclusions -- Acknowledgments -- References -- 16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials -- 16.1 Introduction -- 16.2 Aerogels -- 16.2.1 Plant and Bacterial Cellulose -- 16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin. , 16.2.3 Carbon Aerogels Produced From Bacterial Cellulose.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Sharjah :Bentham Science Publishers,
    Keywords: Electronic books.
    Description / Table of Contents: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 2 explains the methods used to control the remediation processes making it cost-effectively and feasible. It elaborates on the application of microbial enzymes, microalgae, and genetically engineered microorganisms in the bioremediation of significant pollutants, food wastes, distillery wastewater, and pharmaceutical wastes. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Type of Medium: Online Resource
    Pages: 1 online resource (395 pages)
    Edition: 1st ed.
    ISBN: 9789815123524
    Series Statement: Sustainable Materials Series ; v.2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Enzymes--Biotechnology. ; Electronic books.
    Description / Table of Contents: The book presents recent advances in the field of nanoenzymes and the immobilization of enzymes in nanomaterials.
    Type of Medium: Online Resource
    Pages: 1 online resource (270 pages)
    Edition: 1st ed.
    ISBN: 9781644901977
    Series Statement: Materials Research Foundations Series ; v.126
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Recent Advances in Enzyme Immobilization in Nanomaterials -- 1. Enzymes and their uses/ applications/ functions -- 1.2 Definition of enzyme -- 1.2 History & -- etymology of enzymes -- 1.3 Nomenclature -- 1.4 Enzyme activity -- 1.5 Sequence similarity -- 1.6 Chemical structure -- 1.6.1 Co-factor -- 1.6.2 Co-enzymes -- 1.6.3 Inhibitor -- 1.6.3.1 Competitive -- 1.6.3.2 Non-competitive -- 1.6.3.3 Uncompetitive -- 1.6.3.4 Mixed -- 1.6.3.5 Irreversible -- 1.6.4 Functions of inhibitors -- 1.7 Mechanism of enzymes working -- 1.7.1 Substrate binding -- 1.7.2 "Lock and key" model -- 1.7.3 "Induced fit" model -- 1.7.4 Catalysis -- 1.7.5 Dynamics -- 1.7.6 Substrate presentation -- 1.7.7 Allosteric modulation -- 1.8 Factor affecting enzymes activity -- 1.9 Functions -- 1.9.1 Biological functions -- 1.9.1.1 Metabolism -- 1.9.1.2 Control activity -- 1.9.1.2.1 Regulation -- 1.9.1.2.2 Post-translational modification -- 1.9.1.2.3 Quantity -- 1.9.1.2.4 Subcellular distribution -- 1.9.1.2.5 Organ specialization -- 1.9.2 Industrial applications -- 2. Different methods for enzymes immobilization in nanomaterials -- 2.1 Adsorption -- 2.2 Covalent bonding -- 2.3 Entrapment -- 2.4 Cross-linking -- 2.5 Bio-affinity interactions and other techniques -- 3. Enzymes immobilization on different nanomaterial -- 3.1 Immobilization of carbonaceous nanomaterials -- 3.2 Carbon nanotube -- 3.2.1 Graphene -- 3.2.2 Graphene oxide and reduced graphene oxide -- 3.3 Immobilization on metal/metal oxides nanomaterials -- 3.3.1 Metal nanomaterial -- 3.3.2 Metal hydroxide -- 3.3.3 Metal oxide nanomaterials -- 3.4 Immobilization of conductive polymers -- 3.5 Enzyme immobilization on other materials -- 4. Application of immobilized enzymes on nanomaterials. , 4.1 Electrochemical sensing applications of enzyme immobilized on nanomaterials -- 4.1.1 Amperometric biosensors -- 4.1.2 Potentiometric biosensors -- 4.1.2.1 Ion selective electrode -- 4.1.2.2 Enzyme field-effect transistors -- 4.1.2.3 Light addressable potentiometric sensors -- 4.1.3 Conductometry -- 4.1.4 Impedimetric enzyme biosensors -- 4.2 Fuel cell applications of enzyme immobilized on nanomaterials -- 4.3 Bio-sensor applications of enzyme immobilized on nanomaterials -- 4.4 Enzyme nanoparticles for biomedical application -- 4.4.1 Thrombolytic therapy -- 4.4.2 Oxidative stress and tnflammation therapy -- 4.4.3 Antibacterial treatment -- 4.5 Water contaminants treatment applications of enzyme immobilized on nanomaterials -- 4.5.1 Removal of emerging content -- 4.5.2 Disinfection -- 4.6 Water contaminants monitoring applications of enzyme immobilized on nanomaterials -- 4.6.1 Bacterial approach -- 4.6.2 Colorimetric approach -- 4.6.3 Electro-enzymatic approach -- 4.7 Other applications of immobilized enzymes on nanomaterials -- Conclusion -- References -- 2 -- Production, Properties and Applications of Materials-based Nano-Enzymes -- 1. Introduction -- 2. Production and properties of nanomaterial-based enzymes -- 2.1 Chemical synthesis of nanomaterial-based enzymes -- 2.2 Physical synthesis of nanomaterial-based enzymes -- 2.3 Biological synthesis of nanomaterial-based enzymes -- 2.4 Properties of nanomaterial-based enzymes -- 3. Application of nanomaterial-based enzymes in the food industry -- 3.1 Carbon-based nanomaterial enzyme biosensors -- 3.2 Zinc oxide-based nanomaterial enzyme biosensors -- 3.3 Magnetite-based nanomaterial enzyme biosensors -- 3.4 Copper cluster-based nanomaterial enzyme biosensors -- 3.5 Noble metal-based nanomaterial enzyme biosensors -- 4. Challenges and prospects -- Conclusions -- References -- 3. , Use of Nanomaterials-Based Enzymes in the Food Industry -- 1. Introduction -- 2. Nanozymes and its features -- 3. Catalytic mechanism of nanomaterials based enzymes -- 4. Nanomaterials-based enzymes for food analysis -- 4.1 Metal oxide-based -- 4.2 Metal-based nanozymes -- 4.3 Metal-organic frameworks based nanozymes -- 4.4 Molecularly imprinted polymers (MIP)-Based -- 4.5 Carbon-based nanozymes -- 5. Schemes to improve substrate specificity of nanozymes -- 6. Some other applications in the food industry -- 6.1 Intentional adulteration -- 6.2 Detection system for insecticides -- 6.3 Design for detection of gram negative bacterium -- 6.4 Detection of ethanol -- 6.5 Mycotoxins -- 6.6 Other food contaminants detection -- 6.6.1 Lipopolysaccharide (LPS) -- 6.6.2 Hydroquinone (H2Q) -- 6.6.3 Arsenic-III -- 6.6.4 Norovirus (NoV) -- Conclusion -- Acknowledgment -- References -- 4 -- Nanomaterials Supported Enzymes: Environmental Applications for Depollution of Aquatic Environments -- 1. Introduction -- 2. Enzymes -- 3. Sources of enzymes and their applications -- 4. Enzyme immobilization -- 5. Methods of Immobilization -- 5.1 Adsorption -- 5.2 Entrapment -- 5.3 Covalent binding -- 5.4 Cross-linking -- 6. Nanosupports for enzyme immobilization -- 6.1 Silica nanosupports -- 6.2 Carbon nanosupports -- 6.3 Metallic nanosupports -- 7. Applications of nanosupported enzymes in the depollution of aquatic environment -- 7.1 Water treatment applications -- 7.1.1 Eradication of emerging pollutants -- 7.1.2 Disinfection -- 7.2 Water monitoring applications -- 7.2.1 Electro-enzymatic method -- 7.2.2 Colorimetric method -- 7.2.3 Bacterial monitoring -- Conclusion and Future Perspectives -- References -- 5 -- Enzyme Immobilized Nanoparticles Towards Biosensor Fabrication -- 1. Introduction -- 2. Enzyme immobilized nanomaterials -- 2.1 Metal nanomaterials. , 2.2 Metal oxide nanomaterials -- 2.3 Carbon-derived nanomaterials -- 2.4 Polymeric nanomaterials -- 2.5 Nanocomposites -- 3. Enzyme immobilized nanomaterial-based biosensors and their applications -- 3.1 Electrochemical biosensors -- 3.2 Optical biosensors -- 3.3 Piezoelectric and gravimetric biosensor -- 3.4 Magnetic biosensors -- 4. Future perspectives -- Conclusions -- References -- 6 -- Applications of Nanoparticles-based Enzymes in the Diagnosis of Diseases -- 1.1 Nanomaterials -- 1.2 Enzymes -- 1.3 Nanomaterials supported enzymes (NSEs) -- 2. Applications of nanomaterial supported enzymes (NSEs) -- 2.1 Role of NSEs in disease diagnosis and therapeutics -- 2.2 Use of NSEs in therapeutic -- 2.3 Applications of NSEs in biofilms and tumor prevention/disruption -- 2.4 The NSEs as enzymes inhibitors -- 2.5 Enzymatic Inhibition -- 2.6 Nanozymes for Inactivation/Inhibition of SARS-CoV-2 -- 3. Role in biology and medicine -- 4. Nanozymes for sensing applications -- 5. Cancer tumor and bacterial detection -- 6. Imaging, diagnostics and biomarker monitoring -- 7. Role in HIV reactivation -- 8. Nanozymes for live cell and organelle imaging -- 9. The role of nanozymes in cardiovascular diseases (CVDS) -- 10. Diagnosis of CVDs -- 11. Applications of Nanozymes in the treatment of CVDs -- 12 The role of nanozymes in cyto-protecting -- 13. Advances of nanozymes in the neural disorders -- 14. Future prospects of NSEs -- Conclusions -- References -- 7 -- Drug Delivery using Nano-Material based Enzymes -- 1. Introduction to Nanozymes -- 2. Categorical distribution of nanozymes based on material type -- 2.1 Metal-based nanozymes -- 2.2 Fe-based nanozymes -- 2.3 Carbon-based nanozymes -- 3. Major Classes of nano-enzyme based on mode of action -- 3.1 Antioxidant nanozymes -- 3.2 Superoxide dismutase (SOD) antioxidant nanozymes -- 3.3 Pro-oxidant nanozymzes. , 4. Nanoparticles with enzyme-responsive linker -- 5. Nanozymes preparation -- 5.1 Hydrothermal method -- 5.2 Solvothermal method -- 5.3 Co-precipitation method -- 6. Development of endogenous enzyme-responsive nanomaterials -- 6.1 Synthesis of nanomaterials with enzyme-responsive core -- 6.2 Nanoparticles construction with enzyme responsive crown -- 6.3 Modification of nanomaterials with enzyme responsive linker -- 6.4 Nanoparticles and enzyme-responsive ligands -- 7. Factors affecting nanozymes activity -- 7.1 Morphology -- 7.2 Size -- 7.3 Surface modifications -- 8. Therapeutic applications of nanozymes -- 8.1 Cytoprotection -- 8.2 Nano carriers -- 8.3 Nanozymes as antibacterial, anti-inflammatory and antibiofilm agents -- 8.4 Nanomaterials based targeted drug delivery to overcome tuberculosis (TB) -- 8.5 Anti-tumor drug delivery via enzyme-responsive NPs -- 9. Limitations of nanozymes -- Conclusion -- References -- 8 -- Biomedical uses of Enzymes Immobilized by Nanoparticles -- 1. Introduction -- 2. Enzymes immobilization methods -- 3. Choice of supports -- 3.1 Entrapment -- 3.2 Crosslinking -- 3.3 Covalent attachment -- 3.4 Adsorption -- 4. Carrier bound method: general concept -- 5. Degradation of dye pollutants -- 6. Fe3O4 along with L-asparaginase -- 7. Chitin and chitosan support material for immobilization -- 7.1 Biomedical applications -- 8. Zinc oxide nano-particles -- 9. Modern applications -- 9.1 Biosensor -- 9.2 MnFe2O4@SiO2@PMIDA magnetic nanoparticles for antibody immobilization -- Conclusion -- Acknowledgment -- References -- 9 -- Use of Nanomaterials-based Enzymes in Vaccine Production and Immunization -- 1. Intrоduсtiоn -- 2. Enzymes -- 2.1 Hоw enzymes wоrk -- 2.2 Natural and Artificial Enzymes -- 3. Nаnоzymes -- 4. Nаnоzymes in vассine рrоduсtiоn аnd immunizаtiоn -- 4.1 Nаnоmаteriаl-bаsed enzymes in vассine рrоduсtiоn. , 4.1.1 Nаnоflu.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Piezoelectric materials. ; Electronic books.
    Description / Table of Contents: The book reviews our current knowledge of piezoelectric materials, including their history, developments, properties, process design, and technical applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9781644902097
    Series Statement: Materials Research Foundations Series ; v.131
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Types, Properties and Characteristics of Piezoelectric Materials -- 1. Introduction -- 1.1 Single crystals -- 1.2 Ceramics -- 1.3 Composites -- 1.4 Polymers -- 1.5 Sensor configuration based on shape and size -- 1.6 Classification based on dimension -- 2. Properties of piezoelectric materials -- 2.1 Basic equations -- 2.2 Curie temperature -- 2.3 Phase transition -- 2.4 High dielectric constant -- 2.5 Sensitivity -- 2.6 Electromechanical Coupling Factor (k) -- 2.7 Resistivity (R) and time constant (RC) -- 2.7 Quality factors (mechanical and electrical) -- 2.8 Figure of Merit (FOM) and strain coefficient -- 2.9 Piezoelectric resonance frequency -- 2.10 Thermal expansion -- 2.11 Ageing -- 3. Characterization of piezoelectric materials -- 3.1 Measurement of piezoelectric coefficient -- 3.2 Measurement of dielectric constant -- 3.3 Measurement of Curie temperature -- 3.4 Etching and poling -- 3.5 Measurement of hysteresis (PE/SE) loops -- Conclusions -- References -- 2 -- Fabrication Approaches for Piezoelectric Materials -- 1. Introduction -- 2. Preparation techniques for piezoelectric ceramics -- 2.1 Synthesis of ceramic powders -- 2.1 Solid-state reaction -- 2.2 Co-precipitation -- 2.3 Alkoxide hydrolysis -- 2.4 The sintering method -- 2.5 Templated grain growth -- 3. Piezoelectric materials in device fabrication -- 4. Bio-piezoelectric materials -- 4.1 Types bio-piezoelectric materials -- 4.2 Synthesis strategies -- 4.2.1 Thin films -- 4.2.2 Nanoplatforms -- 5. Challenges -- 5.1 Piezoelectric ceramics -- 5.2 Bio-piezoelectric materials -- Conclusion -- References -- 3 -- Piezoelectric Materials-based Nanogenerators -- 1. Introduction -- 2. Piezoelectricity and crystallography -- 3. Maxwell's equations and piezoelectric nanogenerator -- 4. Piezoelectric materials for nanogenerators. , 4.1 Ceramic -- 4.1.1 Zinc oxide -- 4.1.2 Barium titanate -- 4.1.3 Lead zirconate titanate (PZT) -- 4.2 Polymer -- 4.2.1 PVDF and its copolymer -- 4.2.2 Polylactic acid -- 4.2.3 Cellulose -- 4.3 Ferroelectret -- 4.4 PVDF based composite -- 4.4.1 Ceramic filler -- 4.4.2 Carbon-based filler -- 4.4.3 Metal based filler -- 4.4.4 Other fillers -- 5. Applications of piezoelectric nanogenerator -- 5.1 Power source of electronic devices -- 5.2 Sensing application -- 6. Challenges and future scopes -- Conclusions -- Acknowledgement -- References -- 4 -- Piezoelectric Materials based Phototronics -- 1. Introduction -- 1.1 Piezoelectric effect -- 1.2 Piezotronic effect -- 2. Piezo-phototronic effect -- 3. Piezoelectric semiconductor NWs -- 4. Effect on 2D materials -- 5. Effect on 3rd generation semiconductors -- 6. Piezo-phototronic effect on LED -- 7. Piezo-phototronic effect on solar cell -- 8. Piezo-phototronics in luminescence applications -- 9. Piezo-phototronics in other applications -- References -- 5 -- Piezoelectric Composites and their Applications -- 1. Introduction -- 2. The mechanism of piezoelectricity and principle of PZT-polymer composites -- 3. Piezoelectric materials -- 4 Applications of piezoelectric composite materials -- 4.1 Energy harvesting applications -- 4.2 Medical applications of piezoelectric materials -- 4.2.1 Piezoelectric medical devices -- 4.2.2 Piezoelectric sensors -- 4.2.3 Piezoelectric prosthetic skin -- 4.2.4 Cochlear implants -- 4.2.5 Piezoelectric surgery -- 4.2.6 Ultrasonic dental scaling -- 4.2.7 Microdosing -- 4.2.8 Energy harvesting -- 4.2.9 Catheter applications -- 4.2.10 Neural stimulators -- 4.2.11 Healthcare monitoring -- 5. Structural health monitoring and repair -- Conclusion -- References -- 6 -- Piezoelectric Materials for Biomedical and Energy Harvesting Applications -- 1. Introduction. , 1.1 Types of advance piezoelectric functional materials -- 1.1.1 Polymer piezocomposite -- 1.1.2 Ceramics piezocomposite -- 1.1.3 Polymer ceramics piezocomposite -- 2. Applications -- 2.1 Microelectromechanical system (MEMS) devices -- 2.2 MEMS generators for energy harvesting -- 2.3 MEMS sensor -- 2.3.1 Pressure sensor -- 2.3.2 Healthcare sensor -- 2.3.3 Cell and tisusse regenration -- Conclusion -- Reference -- 7 -- Piezoelectric Thin Films and their Applications -- 1. Piezoelectric thin films -- 2. Lead free piezoelectric thin films -- 2.1 AlN thin films -- 2.2 ZnO thin films -- 2.2.1 Synthesis of ZnO thin films -- 2.3 KNN thin films -- 2.3.1 Synthesis of KNN thin films -- 3. Characterization techniques for piezoelectric thin film -- 3.1 Resonance spectrum method -- 3.2 Pneumatic loading method and normal loading method -- 3.3 Characterizations using capacitance measurements -- 4. Applications -- 4.1 Energy harvesting -- 4.2 Actuators -- 4.3 Electronics -- 4.4 Acoustic biosensors -- 4.5 Surface acoustic wave (SAW) biosensors -- 5. Recent developments in piezoelectric thin film devices -- Conclusion -- References -- 8 -- Bulk Lead-Free Piezoelectric Perovskites and their Applications -- 1. Perovskites -- 2. Lead free perovskites -- 3. Processing of lead-free perovskites -- 4. Piezoelectricity in lead free perovskite -- 4.1 Fundamentals of piezoelectricity -- 5. Different lead-free piezoceramics and their applications -- 5.1 KNN based ceramics -- 5.2 Bismuth sodium titanate based piezoceramics and their applications -- 5.3 BaTiO3 (BT) based piezo-ceramics -- 5.3.1 BaTiO3 ceramics phase boundary -- 5.3.2 Factors in phase boundaries -- 5.3.3 Sintering and curie temperature -- 5.4 Bismuth based piezoceramics -- 5.4.1 Phase boundary in BFO-based ceramics -- 5.4.1.1 Ion substitution -- 5.4.1.2 Addition of ABO3. , 5.4.2 Temperature stability of strain properties -- 5.4.3 Relationship between piezoelectricity and phase boundaries -- 6. Requirements for piezoceramic applications -- 6.1 Actuators -- 6.2 Sensors -- 6.3 Transducers -- 6.3.1 Piezoelectric transducers -- 6.4 Resonators -- Conclusion -- References -- 9 -- Piezoelectric Materials for Sensor Applications -- 1. Introduction -- 2. Piezoelectric mechanism -- 3. Types of piezoelectric materials -- 4. Fabrication methods -- 5. Applications of piezoelectric materials -- 5.1 Applications in wearable and implanted biomedical devices -- 5.2 Piezoelectric materials for energy applications -- 5.3 Piezoelectric materials in tissue engineering -- 5.4 Piezoelectric materials in other applications -- Conclusion and outlook -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...