GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calcium carbonate, mass; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Experiment; Experiment duration; Foraminifera; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heterotrophic prokaryotes; Hydroxide ion; Identification; Individuals; Laboratory experiment; Mass; OA-ICC; Ocean Acidification International Coordination Centre; Operculina ammonoides; Oxygen evolution; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Photosynthesis rate; Primary production/Photosynthesis; Ratio; Red Sea; Registration number of species; Respiration; Salinity; Single species; Size; Species; Temperate; Temperature, water; Time in hours; Treatment; Type; Uniform resource locator/link to reference  (1)
  • Continental drift.  (1)
  • 2020-2024  (2)
Document type
Keywords
Publisher
Language
Years
  • 2020-2024  (2)
Year
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Continental drift. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (664 pages)
    Edition: 1st ed.
    ISBN: 9780128185346
    DDC: 551.136
    Language: English
    Note: Front Cover -- Ancient Supercontinents and the Paleogeography of Earth -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- 1 Precambrian supercontinents and supercycles-an overview -- 1.1 The history of the supercontinent research-the five milestones -- 1.2 The Earth and the solar system -- 1.3 Some tectonic concepts -- 1.4 Precambrian supercontinents and their cyclicity-observational evidence -- 1.5 How to reconstruct Precambrian terranes? -- 1.6 Models of the Precambrian supercontinents-some remarks -- 1.7 Precambrian paleomagnetism and paleogeography: a guideline -- 1.7.1 Target rocks -- 1.7.2 Steps 1 and 2 -- 1.7.3 Steps 3−6 -- 1.7.4 Step 7 -- 1.7.5 Step 8 -- 1.8 Precambrian paleomagnetism applied to paleoreconstructions-an example -- 1.8.1 Example 1: closest approach technique for reconstructions -- 1.8.2 Matching apparent polar wander paths-another technique for reconstructions -- 1.9 Precambrian paleomagnetic databases -- 1.9.1 Precambrian pole distributions -- 1.9.2 Some aspects of Precambrian paleomagnetic data -- 1.10 Global and terrane geological maps for reconstructions -- 1.11 Precambrian supercontinent cycle -- 1.11.1 The Precambrian supercontinents and supercycles -- 1.11.2 Secular evolution trends during the Precambrian -- 1.11.2.1 Proxies of core and mantle -- 1.11.2.2 Proxies of crustal extraction -- 1.11.2.3 Proxies reflecting plate tectonics -- 1.11.2.4 Paleolatitude proxies -- 1.11.2.5 Paleoclimate and other proxies -- 1.11.2.6 Kinematic proxies -- 1.11.3 Are the supercontinents the same, similar, or different? -- 1.11.4 Precambrian events and supercontinent cycle -- 1.12 Conclusions and suggestions for future work -- 1.13 How we proceed in this book -- Acknowledgments -- Appendices -- References. , 2 A mantle dynamics perspective on the drift of cratons and supercontinent formation in Earth's history -- 2.1 Introduction -- 2.2 Methodology -- 2.2.1 Geodynamic modeling -- 2.2.2 Specific model setup -- 2.2.2.1 Continent configuration -- 2.2.3 Continental drift diagnostics -- 2.2.4 Computed evolutions -- 2.3 Results -- 2.3.1 Average mantle structure -- 2.3.2 Temporal changes in surface plate motions and continental drift -- 2.3.3 Geodynamic surface evolutions -- 2.3.3.1 Homogeneous continent-size distribution (case A) -- 2.3.3.2 Heterogeneous continent-size distribution (case B) -- 2.3.3.3 More vigorous mantle flow (case C) -- 2.4 Long-term cooling of the mantle (case D) -- 2.5 Discussion -- 2.5.1 Supercontinent formation scenarios and grouping of continental units -- 2.5.2 Inclination frequency sampling and inferences on the GAD hypothesis -- 2.5.3 Challenges in the comparison to paleomagnetic data -- 2.5.4 Model limitations and future directions -- 2.6 Conclusion -- Acknowledgments -- References -- 3 Precambrian geomagnetic field-an overview -- 3.1 Introduction -- 3.2 Precambrian geomagnetic field-characteristic features -- 3.3 Inclination frequency analysis -- 3.4 Field reversals -- 3.5 Paleosecular variation -- 3.6 Paleointensity -- 3.7 Continental drift -- 3.8 Results -- 3.9 Conclusion -- Acknowledgments -- References -- 4 The Precambrian paleogeography of Laurentia -- 4.1 Introduction and broad tectonic history -- 4.1.1 Laurentia's initial formation -- 4.1.2 Protracted Proterozoic accretionary growth followed by collisional orogenesis -- 4.1.3 Neoproterozoic rifting -- 4.1.4 Similarities in Laurentia's Proterozoic and Phanerozoic tectonic histories -- 4.2 Paleomagnetic pole compilation -- 4.3 Differential motion before Laurentia amalgamation -- 4.4 Paleogeography of an assembled Laurentia. , 4.5 Comparing paleogeographic models to the paleomagnetic compilation -- 4.6 Paleoenvironmental constraints on paleolatitude -- 4.7 Evaluating Laurentia's Proterozoic paleogeographic neighbors -- 4.7.1 Paleogeographic connections prior to initial Laurentia assembly -- 4.7.2 Amazonia -- 4.7.3 Australia and East Antarctica -- 4.7.4 Baltica -- 4.7.5 Kalahari -- 4.7.6 North China -- 4.7.7 Siberia -- 4.8 The record implies plate tectonics throughout the Proterozoic -- 4.9 Conclusion -- Acknowledgments -- Notes -- Glossary -- References -- 5 The Precambrian drift history and paleogeography of Baltica -- 5.1 Introduction -- 5.2 Geological evolution of Baltica -- 5.2.1 General geological outline for Baltica -- 5.2.2 Geological evolution of Fennoscandia and formation of Baltica -- 5.2.2.1 Geological evolution of the Archean Karelian and Kola cratons of Fennoscandia -- 5.2.2.2 Crustal growth of Fennoscandia-the Svecofennian orogen -- 5.2.3 Geological evolution of Volgo-Sarmatia and formation of Baltica -- 5.2.4 Geological evolution of Baltica -- 5.2.4.1 Baltica within Nuna-different tectonic regimes -- 5.2.4.2 Igneous activity and rifting in Baltica reflecting initiation of the breakup on Nuna? -- 5.2.4.3 Late Mesoproterozoic-Neoproterozoic geological evolution of Baltica-the Rodinia cycle -- 5.3 Material and methods -- 5.3.1 Paleomagnetic poles of Baltica-latitudinal drift history and drift rate -- 5.3.2 Paleoclimatic indicators of Baltica-testing the reconstructed latitudinal drift history -- 5.4 Paleomagnetic evidence for the drift of Baltica -- 5.4.1 Review of the paleomagnetic poles of Baltica -- 5.4.1.1 Archean-Paleoproterozoic poles of subcratons of Baltica -- 5.4.1.2 Late Paleoproterozoic-Neoproterozoic poles for amalgamated Baltica -- 5.4.2 Latitudinal drift of Baltica -- 5.4.2.1 Archean-Paleoproterozoic latitudinal drift and amalgamation of Baltica. , 5.4.2.2 Late Paleoproterozoic-Neoproterozoic latitudinal drift of amalgamated Baltica -- 5.5 Paleoproterozoic-Neoproterozoic climatic indicators for Baltica -- 5.6 Drift velocities of Baltica and its subcratons with implication to tectonics -- 5.6.1 Archean-Paleoproterozoic drift velocities with implication to tectonics -- 5.6.2 Late Paleoproterozoic-Neoproterozoic drift velocities with implication to tectonics -- 5.7 Implications for Baltica in Superia supercraton and Nuna and Rodinia supercontinents -- 5.7.1 Karelian and Kola in Superia -- 5.7.2 Baltica in Nuna and Rodinia cycles -- 5.7.2.1 Baltica-Laurentia-Siberia -- 5.7.2.2 Baltica-Congo-São Francisco -- 5.7.2.3 Baltica-India in Nuna and Rodinia cycles -- 5.7.2.4 Baltica-Amazonia in Nuna and Rodinia cycles -- 5.8 Concluding remarks -- Acknowledgments -- Supplementary table -- References -- 6 The Precambrian drift history and paleogeography of Amazonia -- 6.1 Introduction -- 6.2 The Amazonian Craton -- 6.3 Quality criteria of paleomagnetic poles -- 6.4 Amazonian paleomagnetic data and apparent polar wander path -- 6.4.1 Amazonian latitude drift -- 6.4.2 Amazonian apparent polar wander path and the polarity time scale -- 6.4.3 Amazonia pre-Columbia -- 6.4.4 Amazonia in a long-lived Columbia? -- 6.4.5 Amazonian Craton in the Rodinia supercontinent -- 6.4.6 Amazonian Craton in Gondwana -- 6.5 Final remarks -- Acknowledgments -- References -- 7 The Precambrian drift history and paleogeography of Río de la Plata craton -- 7.1 Introduction -- 7.2 Geology of the Río de la Plata craton -- 7.2.1 Piedra Alta Terrane (PA) -- 7.2.2 Tandilia terrane (T) -- 7.2.3 Nico Perez terrane (NP) and Dom Feliciano Belt (DFB) -- 7.3 Material -- 7.4 Results -- 7.5 Discussion -- 7.5.1 RP and Precambrian continents -- 7.5.2 Paleoclimatic record of RP -- 7.6 Conclusions -- Acknowledgements -- References. , 8 Precambrian paleogeography of Siberia -- 8.1 Introduction -- 8.2 Geology of the Siberian Craton -- 8.3 Paleomagnetic data and paleolatitudes of Siberian Craton -- 8.4 Possible neighbors of Siberian Craton -- 8.5 Conclusion -- Acknowledgments -- References -- 9 Whence Australia: Its Precambrian drift history and paleogeography -- 9.1 Introduction to the Precambrian geology of Australia -- 9.2 Material -- 9.2.1 Paleomagnetic studies -- 9.2.1.1 Archean poles -- Archean Hamersley banded-iron formations and iron ores -- 9.2.1.2 Paleo-Mesoproterozoic -- Kimberley Craton -- Paleo-Mesoproterozoic McArthur Basin/Pine Creek Inlier -- 9.2.1.3 Mesoproterozoic -- Middleback Ranges -- Gawler Craton -- Warakurna large igneous province -- The Albany-Fraser Belt -- 9.2.1.4 Neoproterozoic -- Mundine Dyke Swarm, WA -- Central Australian successions -- Dykes of the Yilgarn Craton, WA -- South Australian successions -- 9.2.2 Data selection -- 9.3 Results: original and age-binned apparent polar wander paths -- 9.3.1 Raw apparent polar wander curve -- 9.3.2 Age-binned APW curve -- 9.4 Discussion -- 9.4.1 Implications for supercontinents -- 9.4.1.1 Australian Cratons in Kenorland (c. 2.77-2.47Ga) -- 9.4.1.2 Australian Cratons in Nuna -- 9.4.1.3 Australian Cratons in Rodinia -- 9.4.2 Neoproterozoic intracontinental rotation -- 9.4.3 Implications for assembly and potential separation events of the Australian cratons -- 9.4.4 Paleoclimate indicators -- 9.4.5 Australian paleolatitudes in a global perspective -- 9.5 Summary -- References -- 10 The Precambrian drift history and paleogeography of India -- 10.1 Introduction -- 10.2 Data selection -- 10.2.1 Southern Indian Block (Dharwar, Bastar, and Singhbhum cratons) -- 10.2.1.1 Dharwar craton results -- 10.2.1.1.1 Bastar craton -- 10.2.1.1.2 Singhbhum craton. , 10.2.2 Northern Indian Block (Aravalli-Delhi-Marwar-Banded Gneiss Complex/Bundelkhand craton).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Larger benthic foraminifera (LBF) are unicellular eukaryotic calcifying organisms and an important component of tropical and subtropical modern and ancient oceanic ecosystems. They are major calcium carbonate producers and important contributors to primary production due to the photosynthetic activity of their symbiotic algae. Studies investigating the response of LBF to seawater carbonate chemistry changes are therefore essential for understanding the impact of climate changes and ocean acidification (OA) on shallow marine ecosystems. In this study, calcification, respiration, and photosynthesis of the widespread diatom‐bearing LBF Operculina ammonoides were measured in laboratory experiments that included manipulation of carbonate chemistry parameters. pH was altered while keeping dissolved inorganic carbon (DIC) constant, and DIC was altered while keeping pH constant. The results show clear vulnerability of O. ammonoides to low pH and CO32− under constant DIC conditions, and no increased photosynthesis or calcification under high DIC concentrations. Our results call into question previous hypotheses, suggesting that mechanisms such as the degree of cellular control on calcification site pH/DIC and/or enhanced symbiont photosynthesis in response to OA may render the hyaline (perforate and calcitic‐radial) LBF to be less responsive to OA than porcelaneous LBF. In addition, manipulating DIC did not affect calcification when pH was close to present seawater levels in a model encompassing the total population size range. In contrast, larger individuals (〉1,200 μm, 〉1 mg) were sensitive to changes in DIC, a phenomenon we attribute to their physiological requirement to concentrate large quantities of DIC for their calcification process.
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calcium carbonate, mass; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Experiment; Experiment duration; Foraminifera; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heterotrophic prokaryotes; Hydroxide ion; Identification; Individuals; Laboratory experiment; Mass; OA-ICC; Ocean Acidification International Coordination Centre; Operculina ammonoides; Oxygen evolution; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Photosynthesis rate; Primary production/Photosynthesis; Ratio; Red Sea; Registration number of species; Respiration; Salinity; Single species; Size; Species; Temperate; Temperature, water; Time in hours; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 3889 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...