GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical method; calanoid copepods; carbon budgets; Coastal Upwelling System in a Changing Ocean; consumption rates; Copepoda, mass; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Egestion rate of carbon per day per individual; Event label; Ingestion rate of carbon per day per individual; Latitude of event; Life stage; Longitude of event; Maria S. Merian; MSM80; MSM80_102-4; MSM80_10-4; MSM80_104-6; MSM80_13-4; MSM80_14-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_20-4; MSM80_22-4; MSM80_25-4; MSM80_28-4; MSM80_30-4; MSM80_38-5; MSM80_40-5; MSM80_43-5; MSM80_45-5; MSM80_4-6; MSM80_46-6; MSM80_53-4; MSM80_56-5; MSM80_58-4; MSM80_60-4; MSM80_66-4; MSM80_67-4; MSM80_68-5; MSM80_70-3; MSM80_7-4; MSM80_74-4; MSM80_78-4; MSM80_80-6; MSM80_89-4; MSM80_90-4; MSM80_94-5; MSM80_95-4; MSM80_96-4; MSM80_99-6; MSN; Multiple opening/closing net; Respiration rate, carbon, per individual; Respiration rate, oxygen, per dry mass; Respiration rate, oxygen, per individual; Sample ID; Species; Station label; Temperature, technical; Upwelling  (1)
  • Southern Ocean  (1)
  • ANT-XVI/3; Biomass as carbon per individual; BONGO; Bongo net; Clearance rate per individual; E_superba_FEEDEXP-1; Polarstern; PS53; Southern Ocean; Taxon/taxa; Treatment: temperature; Uniform resource locator/link to reference
  • Antarctic blue whale
  • 2020-2024  (2)
Document type
Keywords
Publisher
Language
Years
Year
  • 1
    Publication Date: 2024-03-12
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro‐, meso‐ and macrozooplankton) in the ocean biogeochemical model FESOM‐REcoM. In the presented model, microzooplankton is a fast‐growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow‐growing group with a low temperature optimum. Meso‐ and macrozooplankton produce fast‐sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on‐going and future environmental change in model projections.
    Description: Plain Language Summary: Zooplankton plays an important role in the ocean food web and biogeochemical cycles. However, it is often represented in very simple forms in mathematical models that are, for example, used to investigate how marine primary productivity will react to climate change. To understand how these models would change when more complicated formulations for zooplankton are used, we present here a new version of the model with three (instead of only one) zooplankton groups. We find that this more complicated representation leads to higher zooplankton biomass, which is closer to observations, and this stimulates growth of phytoplankton since zooplankton also returns nutrients into the system. In addition, zooplankton grazing controls the seasonal cycle of phytoplankton, as we show for one example in the Southern Ocean.
    Description: Key Points: Nutrient recycling by zooplankton stimulates net primary production in the biogeochemical model REcoM‐2. Modeling zooplankton functional types (zPFTs) leads to a switch from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Implementing multiple zPFTs improves the modeled zooplankton biomass and zooplankton‐mediated biogeochemical fluxes.
    Description: Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System [MarESys]
    Description: https://doi.org/10.1594/PANGAEA.779970
    Description: https://doi.org/10.1594/PANGAEA.785501
    Description: https://doi.org/10.1594/PANGAEA.777398
    Description: https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
    Description: http://sites.science.oregonstate.edu/ocean.productivity/index.php
    Description: https://doi.pangaea.de/10.1594/PANGAEA.942192
    Keywords: ddc:577.7 ; Southern Ocean ; zooplankton ; ocean food web ; biogeochemical cycles ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-24
    Description: Zooplankton metabolic processes play an important role in carbon budgets and fluxes of pelagic ecosystems. Respiration rates of several copepod species were determined to reveal their energy requirements and assess their significance in the carbon cycle. Respiration rates were measured by optode respirometry and allometrically based on body dry mass (DM). For the on-board measurements, a 10-channel optode respirometer (PreSens Precision Sensing Oxy-10 Mini) was used and experiments were run in gas-tight glass bottles (13-14 ml) filled with filtered seawater to reduce bias by microbial respiration. In addition, respiration rates for all dominant copepod species during MSM80 including copepodite stages C4 to C6 were determined based on individual DM and respective ambient temperatures after Bode et al. (2018). For that, individual DM, if not available from frozen specimens, was determined from formalin/Steedman-preserved samples by weighing the dried samples on a microbalance. Losses in body DM due to formalin/Steedman preservation were considered after Schukat et al. (2021). Respiration rates were calculated separately for the copepod family Eucalanidae (a) as they are rather sluggish while all other copepods exhibited normal activity (b). (a) lnRTF = -2.180 + 0.787 ln(DM) + 0.131T and (b) lnRAC = -0.890 + 0.646 ln(DM) + 0.094T, where R (μl O2 ind-1 h-1) is the individual respiration rate for eucalanid (RTF) and active (RAC) copepods, DM represents dry mass in mg and T the average temperature (°C) of the sampling interval. Respiration rates of the medium- to larger-sized copepods (female prosome length (PL) of 1.2-6.0 mm) were compared to those of "small copepods" (all copepods with female PL 〈1.1 mm and young stages). Medium- to larger-sized species ingested on average 13-212 mg C m-2 d-1 in coastal regions while "small copepods" on average consumed 118-328 mg C m-2 d-1. The potential egestion varied on average from 5-64 mg C m-2 d-1 for medium to larger-sized copepods and 35-98 mg C m-2 d-1 for "small copepods". Data of energy demands, consumption and egestion rates of copepod species differing in size are essential to improve carbon budgets and food-web models in the Humboldt Current System.
    Keywords: Analytical method; calanoid copepods; carbon budgets; Coastal Upwelling System in a Changing Ocean; consumption rates; Copepoda, mass; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Egestion rate of carbon per day per individual; Event label; Ingestion rate of carbon per day per individual; Latitude of event; Life stage; Longitude of event; Maria S. Merian; MSM80; MSM80_102-4; MSM80_10-4; MSM80_104-6; MSM80_13-4; MSM80_14-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_20-4; MSM80_22-4; MSM80_25-4; MSM80_28-4; MSM80_30-4; MSM80_38-5; MSM80_40-5; MSM80_43-5; MSM80_45-5; MSM80_4-6; MSM80_46-6; MSM80_53-4; MSM80_56-5; MSM80_58-4; MSM80_60-4; MSM80_66-4; MSM80_67-4; MSM80_68-5; MSM80_70-3; MSM80_7-4; MSM80_74-4; MSM80_78-4; MSM80_80-6; MSM80_89-4; MSM80_90-4; MSM80_94-5; MSM80_95-4; MSM80_96-4; MSM80_99-6; MSN; Multiple opening/closing net; Respiration rate, carbon, per individual; Respiration rate, oxygen, per dry mass; Respiration rate, oxygen, per individual; Sample ID; Species; Station label; Temperature, technical; Upwelling
    Type: Dataset
    Format: text/tab-separated-values, 10108 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...