GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 6,9,12,15-Hexadecatetraenoic acid of total fatty acids; ACS; all-cis-4,7,10,13,16,19-Docosahexaenoic acid of total fatty acids; all-cis-5,8,11,14,17-Eicosapentaenoic acid of total fatty acids; all-cis-5,8,11,14-Eicosatetraenoic acid of total fatty acids; all-cis-8,11,14-Octadecatrienoic acid of total fatty acids; all-cis-9,12-Octadecadienoic acid of total fatty acids; cis-11-Docosenoic acid of total fatty acids; cis-11-Icosenoic acid of total fatty acids; cis-11-Octadecenoic acid of total fatty acids (IUPAC: Octadec-11-enoic acid); cis-11-Octadecenol of total fatty alcohols; cis-15-Tetracosenoic acid of total fatty acids; cis-9-Hexadecenoic acid of total fatty acids (IUPAC: (9Z)-hexadec-9-enoic acid); cis-9-Hexadecenol of total fatty alcohols; cis-9-Octadecenoic acid of total fatty acids (IUPAC: Octadec-9-enoic acid); cis-9-Octadecenol of total fatty alcohols; Coastal Upwelling System in a Changing Ocean; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Docosenol of total fatty alcohols; Eicosenol of total fatty alcohols; Event label; Gas chromatography; Hexadecanoic acid of total fatty acids; Hexadecanol of total fatty alcohols; IKMT; Individual dry mass; Isaac-Kid-Midwater Trawl; Latitude of event; Life stage; Lipids; Longitude of event; Maria S. Merian; Microstructure Profiler; MSM80; MSM80_102-4; MSM80_13-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_18-7; MSM80_1-9; MSM80_20-4; MSM80_30-4; MSM80_31-4; MSM80_31-7; MSM80_34-4; MSM80_40-5; MSM80_4-6; MSM80_46-15; MSM80_46-20; MSM80_46-23; MSM80_49-6; MSM80_56-5; MSM80_58-4; MSM80_67-4; MSM80_68-5; MSM80_68-6; MSM80_7-4; MSM80_74-4; MSM80_7-8; MSM80_85-3; MSM80_94-5; MSM80_95-4; MSN; MSSP; Multiple opening/closing net; Octadecanoic acid of total fatty acids; Octadecanol of total fatty alcohols; Optical Profiler, ACS; Order; Phytanic acid of total fatty acids; Sample ID; Species; Station label; Tetradecanoic acid of total fatty acids; Tetradecanol of total alcohols; Wax esters  (1)
  • Analytical method; calanoid copepods; carbon budgets; Coastal Upwelling System in a Changing Ocean; consumption rates; Copepoda, mass; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Egestion rate of carbon per day per individual; Event label; Ingestion rate of carbon per day per individual; Latitude of event; Life stage; Longitude of event; Maria S. Merian; MSM80; MSM80_102-4; MSM80_10-4; MSM80_104-6; MSM80_13-4; MSM80_14-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_20-4; MSM80_22-4; MSM80_25-4; MSM80_28-4; MSM80_30-4; MSM80_38-5; MSM80_40-5; MSM80_43-5; MSM80_45-5; MSM80_4-6; MSM80_46-6; MSM80_53-4; MSM80_56-5; MSM80_58-4; MSM80_60-4; MSM80_66-4; MSM80_67-4; MSM80_68-5; MSM80_70-3; MSM80_7-4; MSM80_74-4; MSM80_78-4; MSM80_80-6; MSM80_89-4; MSM80_90-4; MSM80_94-5; MSM80_95-4; MSM80_96-4; MSM80_99-6; MSN; Multiple opening/closing net; Respiration rate, carbon, per individual; Respiration rate, oxygen, per dry mass; Respiration rate, oxygen, per individual; Sample ID; Species; Station label; Temperature, technical; Upwelling  (1)
  • Southern Ocean  (1)
  • ANT-XVI/3; Biomass as carbon per individual; BONGO; Bongo net; Clearance rate per individual; E_superba_FEEDEXP-1; Polarstern; PS53; Southern Ocean; Taxon/taxa; Treatment: temperature; Uniform resource locator/link to reference
  • Antarctic blue whale
  • 2020-2024  (3)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2024-03-12
    Beschreibung: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro‐, meso‐ and macrozooplankton) in the ocean biogeochemical model FESOM‐REcoM. In the presented model, microzooplankton is a fast‐growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow‐growing group with a low temperature optimum. Meso‐ and macrozooplankton produce fast‐sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on‐going and future environmental change in model projections.
    Beschreibung: Plain Language Summary: Zooplankton plays an important role in the ocean food web and biogeochemical cycles. However, it is often represented in very simple forms in mathematical models that are, for example, used to investigate how marine primary productivity will react to climate change. To understand how these models would change when more complicated formulations for zooplankton are used, we present here a new version of the model with three (instead of only one) zooplankton groups. We find that this more complicated representation leads to higher zooplankton biomass, which is closer to observations, and this stimulates growth of phytoplankton since zooplankton also returns nutrients into the system. In addition, zooplankton grazing controls the seasonal cycle of phytoplankton, as we show for one example in the Southern Ocean.
    Beschreibung: Key Points: Nutrient recycling by zooplankton stimulates net primary production in the biogeochemical model REcoM‐2. Modeling zooplankton functional types (zPFTs) leads to a switch from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Implementing multiple zPFTs improves the modeled zooplankton biomass and zooplankton‐mediated biogeochemical fluxes.
    Beschreibung: Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System [MarESys]
    Beschreibung: https://doi.org/10.1594/PANGAEA.779970
    Beschreibung: https://doi.org/10.1594/PANGAEA.785501
    Beschreibung: https://doi.org/10.1594/PANGAEA.777398
    Beschreibung: https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
    Beschreibung: http://sites.science.oregonstate.edu/ocean.productivity/index.php
    Beschreibung: https://doi.pangaea.de/10.1594/PANGAEA.942192
    Schlagwort(e): ddc:577.7 ; Southern Ocean ; zooplankton ; ocean food web ; biogeochemical cycles ; modeling
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-07-01
    Beschreibung: Fatty acids were analyzed by gas chromatography using a DB-FFAP column of 30 m length and 0.25 mm inner diameter and a programmable temperature vaporizer injector. Following the trophic biomarker concept, the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) were classified as typical components of biomembranes. High levels of 16:1(n−7) as well as 16:4(n−1) and 18:1(n−7) were used as diatom markers and 18:4(n−3) as fatty acid marker for dinoflagellates. The fatty acid 18:1(n-9) indicates carnivorous feeding. A carnivory index was applied based on the fatty acid ratio 18:1(n−9) / [16:1(n−7) + 16:4(n−1) + 18:1(n−7) + 18:4(n−3) + 18:1(n−9)] to reflect the proportion of carnivorous compared to herbivorous feeding in an organism. Fatty acid compositions of zooplankton and fish were taxon-specific and did not depend on sampling area or depth. Most species showed a dominance of typical membrane fatty acids, e.g., 16:0, 20:5(n-3) and 22:6(n-3). The dominant copepod Calanus chilensis had a low carnivory index and elevated amounts of diatom fatty acid markers which point to a predominantly herbivorous feeding. Among the krill species, Euphausia mucronata had the lowest carnivory index compared to the other euphausiids indicating a more herbivorous feeding. The squat lobster Pleuroncodes monodon had a significantly lower carnivory ratio compared to the deep-sea decapods Gennadas sp. and Acanthephyra sp. emphasizing its different trophic role compared to other decapods.
    Schlagwort(e): 6,9,12,15-Hexadecatetraenoic acid of total fatty acids; ACS; all-cis-4,7,10,13,16,19-Docosahexaenoic acid of total fatty acids; all-cis-5,8,11,14,17-Eicosapentaenoic acid of total fatty acids; all-cis-5,8,11,14-Eicosatetraenoic acid of total fatty acids; all-cis-8,11,14-Octadecatrienoic acid of total fatty acids; all-cis-9,12-Octadecadienoic acid of total fatty acids; cis-11-Docosenoic acid of total fatty acids; cis-11-Icosenoic acid of total fatty acids; cis-11-Octadecenoic acid of total fatty acids (IUPAC: Octadec-11-enoic acid); cis-11-Octadecenol of total fatty alcohols; cis-15-Tetracosenoic acid of total fatty acids; cis-9-Hexadecenoic acid of total fatty acids (IUPAC: (9Z)-hexadec-9-enoic acid); cis-9-Hexadecenol of total fatty alcohols; cis-9-Octadecenoic acid of total fatty acids (IUPAC: Octadec-9-enoic acid); cis-9-Octadecenol of total fatty alcohols; Coastal Upwelling System in a Changing Ocean; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Docosenol of total fatty alcohols; Eicosenol of total fatty alcohols; Event label; Gas chromatography; Hexadecanoic acid of total fatty acids; Hexadecanol of total fatty alcohols; IKMT; Individual dry mass; Isaac-Kid-Midwater Trawl; Latitude of event; Life stage; Lipids; Longitude of event; Maria S. Merian; Microstructure Profiler; MSM80; MSM80_102-4; MSM80_13-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_18-7; MSM80_1-9; MSM80_20-4; MSM80_30-4; MSM80_31-4; MSM80_31-7; MSM80_34-4; MSM80_40-5; MSM80_4-6; MSM80_46-15; MSM80_46-20; MSM80_46-23; MSM80_49-6; MSM80_56-5; MSM80_58-4; MSM80_67-4; MSM80_68-5; MSM80_68-6; MSM80_7-4; MSM80_74-4; MSM80_7-8; MSM80_85-3; MSM80_94-5; MSM80_95-4; MSN; MSSP; Multiple opening/closing net; Octadecanoic acid of total fatty acids; Octadecanol of total fatty alcohols; Optical Profiler, ACS; Order; Phytanic acid of total fatty acids; Sample ID; Species; Station label; Tetradecanoic acid of total fatty acids; Tetradecanol of total alcohols; Wax esters
    Materialart: Dataset
    Format: text/tab-separated-values, 4235 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-07-01
    Beschreibung: Zooplankton metabolic processes play an important role in carbon budgets and fluxes of pelagic ecosystems. Respiration rates of several copepod species were determined to reveal their energy requirements and assess their significance in the carbon cycle. Respiration rates were measured by optode respirometry and allometrically based on body dry mass (DM). For the on-board measurements, a 10-channel optode respirometer (PreSens Precision Sensing Oxy-10 Mini) was used and experiments were run in gas-tight glass bottles (13-14 ml) filled with filtered seawater to reduce bias by microbial respiration. In addition, respiration rates for all dominant copepod species during MSM80 including copepodite stages C4 to C6 were determined based on individual DM and respective ambient temperatures after Bode et al. (2018). For that, individual DM, if not available from frozen specimens, was determined from formalin/Steedman-preserved samples by weighing the dried samples on a microbalance. Losses in body DM due to formalin/Steedman preservation were considered after Schukat et al. (2021). Respiration rates were calculated separately for the copepod family Eucalanidae (a) as they are rather sluggish while all other copepods exhibited normal activity (b). (a) lnRTF = -2.180 + 0.787 ln(DM) + 0.131T and (b) lnRAC = -0.890 + 0.646 ln(DM) + 0.094T, where R (μl O2 ind-1 h-1) is the individual respiration rate for eucalanid (RTF) and active (RAC) copepods, DM represents dry mass in mg and T the average temperature (°C) of the sampling interval. Respiration rates of the medium- to larger-sized copepods (female prosome length (PL) of 1.2-6.0 mm) were compared to those of "small copepods" (all copepods with female PL 〈1.1 mm and young stages). Medium- to larger-sized species ingested on average 13-212 mg C m-2 d-1 in coastal regions while "small copepods" on average consumed 118-328 mg C m-2 d-1. The potential egestion varied on average from 5-64 mg C m-2 d-1 for medium to larger-sized copepods and 35-98 mg C m-2 d-1 for "small copepods". Data of energy demands, consumption and egestion rates of copepod species differing in size are essential to improve carbon budgets and food-web models in the Humboldt Current System.
    Schlagwort(e): Analytical method; calanoid copepods; carbon budgets; Coastal Upwelling System in a Changing Ocean; consumption rates; Copepoda, mass; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Egestion rate of carbon per day per individual; Event label; Ingestion rate of carbon per day per individual; Latitude of event; Life stage; Longitude of event; Maria S. Merian; MSM80; MSM80_102-4; MSM80_10-4; MSM80_104-6; MSM80_13-4; MSM80_14-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_20-4; MSM80_22-4; MSM80_25-4; MSM80_28-4; MSM80_30-4; MSM80_38-5; MSM80_40-5; MSM80_43-5; MSM80_45-5; MSM80_4-6; MSM80_46-6; MSM80_53-4; MSM80_56-5; MSM80_58-4; MSM80_60-4; MSM80_66-4; MSM80_67-4; MSM80_68-5; MSM80_70-3; MSM80_7-4; MSM80_74-4; MSM80_78-4; MSM80_80-6; MSM80_89-4; MSM80_90-4; MSM80_94-5; MSM80_95-4; MSM80_96-4; MSM80_99-6; MSN; Multiple opening/closing net; Respiration rate, carbon, per individual; Respiration rate, oxygen, per dry mass; Respiration rate, oxygen, per individual; Sample ID; Species; Station label; Temperature, technical; Upwelling
    Materialart: Dataset
    Format: text/tab-separated-values, 10108 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...