GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Instrumentation, IOP Publishing, Vol. 17, No. 01 ( 2022-01-01), p. P01013-
    Abstract: The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Research in Astronomy and Astrophysics, IOP Publishing, Vol. 21, No. 3 ( 2021-04-01), p. 070-
    Abstract: We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846–031 during its outburst in 2019 with the observations of Insight -HXMT, NICER and MAXI . This outburst can be classified roughly into four different states. Type-C quasi-periodic oscillations (QPOs) observed by NICER (about 0.1–6 Hz) and Insight -HXMT (about 0.7–8 Hz) are also reported in this work. Meanwhile, we study various physical quantities related to QPO frequency. The QPO rms–frequency relationship in the energy band 1–10 keV indicates that there is a turning pointing in frequency around 2 Hz, which is similar to that of GRS 1915+105. A possible hypothesis for the relationship above may be related to the inclination of the source, which may require a high inclination to explain it. The relationships between QPO frequency and QPO rms, hardness, total fractional rms and count rate have also been found in other transient sources, which can indicate that the origin of type–C QPOs is non-thermal.
    Type of Medium: Online Resource
    ISSN: 1674-4527
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2511247-8
    SSG: 6,25
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Instrumentation, IOP Publishing, Vol. 17, No. 03 ( 2022-03-01), p. P03014-
    Abstract: Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at  √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nuclear Fusion, IOP Publishing, Vol. 62, No. 4 ( 2022-04-01), p. 042016-
    Abstract: In the last two years, three major technical improvements have been made on J-TEXT in supporting of the expanded operation regions and diagnostic capabilities. (1) The successful commission of the 105 GHz/500 kW/1 s electron cyclotron resonance heating (ECRH) system increasing the core electron temperature from 0.9 keV up to around 1.5 keV. (2) The poloidal divertor configuration with an X -point in the high-field side has been achieved. In particular, the 400 kW electron cyclotron wave has also been successfully injected into the diverted plasma. (3) A 256-channel electron cyclotron emission imaging diagnostic system and two sets of four-channel Doppler backscattering diagnostics have been successfully developed on J-TEXT, allowing detailed measurement of the electron temperature and density fluctuations for turbulence and MHD research. The locked mode (LM), especially the 2/1 LM, is one of the biggest threats to the plasma operation. Both the thresholds of 2/1 and 3/1 LM are observed to vary non-monotonically on electron density. The electrode biasing was applied successfully to unlock the LM from either a rotating or static resonant magnetic perturbation (RMP) field. In the presence of 2/1 LM, three kinds of standing wave (SW) structures have been observed to share a similar connection to the island structure, i.e. the nodes of the SWs locate around the O - or X -points of the 2/1 island. The control and mitigation of disruption is essential to the safe operation of ITER, and it has been systematically studied by applying a RMP field, massive gas injection (MGI) and shattered pellet injection on J-TEXT. When the RMP-induced 2/1 LM is larger than a critical width, the MGI shutdown process can be significantly influenced. If the phase difference between the O -point of LM and the MGI valve is +90° (or −90°), the penetration depth and the assimilation of impurities can be enhanced (or suppressed) during the pre-thermal quench (TQ) phase and result in a faster (or slower) TQ. A secondary MGI can also suppress the runaway electron (RE) generation, if the additional high-Z impurity gas arrives at the plasma edge before TQ. When the secondary MGI has been applied after the formation of the RE current plateau, the RE current can be dissipated, and the dissipation rate increases with the injected impurity quantity but saturates with a maximum of 28 MA s −1 . The non-local transport is experimentally observed in the ion transport channel. The electron thermal diffusivity significantly increases with the ECRH power. Theoretical work shows that significant intrinsic current can be driven by electromagnetic turbulence, and the robust formation mechanism of the E × B staircase is identified from the Hasegawa–Wakatani system.
    Type of Medium: Online Resource
    ISSN: 0029-5515 , 1741-4326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2037980-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...