GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (6)
  • Frontiers  (1)
  • International Association of Geoanalysts
  • 2020-2024  (7)
  • 1
    Publication Date: 2023-02-08
    Description: Weddell Sea-derived Antarctic Bottom Water (AABW) is one of the most important deep water masses in the Southern Hemisphere occupying large portions of the deep Southern Ocean (SO) today. While substantial changes in SO-overturning circulation were previously suggested, the state of Weddell Sea AABW export during glacial climates remains poorly understood. Here we report seawater-derived Nd and Pb isotope records that provide evidence for the absence of Weddell Sea-derived AABW in the Atlantic sector of the SO during the last two glacial maxima. Increasing delivery of Antarctic Pb to regions outside the Weddell Sea traced SO frontal displacements during both glacial terminations. The export of Weddell Sea-derived AABW resumed late during glacial terminations, coinciding with the last major atmospheric CO2 rise in the transition to the Holocene and the Eemian. Our new records lend strong support for a previously inferred AABW overturning stagnation event during the peak Eemian interglacial.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The Permian/Triassic boundary approximately 251.9 million years ago marked the most severe environmental crisis identified in the geological record, which dictated the onwards course for the evolution of life. Magmatism from Siberian Traps is thought to have played an important role, but the causational trigger and its feedbacks are yet to be fully understood. Here we present a new boron-isotope-derived seawater pH record from fossil brachiopod shells deposited on the Tethys shelf that demonstrates a substantial decline in seawater pH coeval with the onset of the mass extinction in the latest Permian. Combined with carbon isotope data, our results are integrated in a geochemical model that resolves the carbon cycle dynamics as well as the ocean redox conditions and nitrogen isotope turnover. We find that the initial ocean acidification was intimately linked to a large pulse of carbon degassing from the Siberian sill intrusions. We unravel the consequences of the greenhouse effect on the marine environment, and show how elevated sea surface temperatures, export production and nutrient input driven by increased rates of chemical weathering gave rise to widespread deoxygenation and sporadic sulfide poisoning of the oceans in the earliest Triassic. Our findings enable us to assemble a consistent biogeochemical reconstruction of the mechanisms that resulted in the largest Phanerozoic mass extinction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Coral-based reconstructions of sea surface temperatures (SSTs) using Sr/Ca, U/Ca and δ18O are important tools for quantitative analysis of past climate variabilities. However, post-depositional alteration of coral aragonite, particularly early diagenesis, restrict the accuracy of calibrated proxies even on young corals. Considering the diagenetic effects, we present new Mid to Late Holocene SST reconstructions on well-dated (U/Th: ∼70 yr to 5.4 ka) fossil Porites sp. collected from the Society Islands, French Polynesia. For few corals, quality pre-screening routines revealed the presence of secondary aragonite needles inside primary pore space, resulting in a mean increase in Sr/Ca ratios between 5-30%, in contrast to the massive skeletal parts. Characterized by a Sr/Ca above 10 mmol/mol, we interpret this value as the threshold between diagenetically altered and unaltered coral material. At a high-resolution, observed intra-skeletal variability of 5.4 to 9.9 mmol/mol probably reflects the physiological control of corals over their trace metal uptake, and individual variations controlled by CaCO3– precipitation rates. Overall, the Sr/Ca, U/Ca and δ18O trends are well correlated, but we observed a significant offset up to ± 7°C among the proxies on derived palaeo-SST estimates. It appears that the related alteration process tends to amplify temperature extremes, resulting in increased SST-U/Ca and SST-Sr/Ca gradients, and consequently their apparent temperature sensitivities. A relative SST reconstruction is still feasible by normalizing our records to their individual mean value defined as ΔSST. This approach shows that ΔSST records derived from different proxies agree with an amplitudinal variability of up to ± 2°C with respect to their Holocene mean value. Higher ΔSST values than the mean SSTs (Holocene warm periods) were recorded from ∼1.8 to ∼2.8 ka (Interval I), ∼3.7 to 4.0 ka (Interval III) and before ∼5 ka, while lower ΔSST values (Holocene cold periods, Interval II and IV) were recorded in between. The ensuing SST periodicity of ∼1.5 ka in the Society Islands record is in line with the solar activity reconstructed from 10Be and 14C production (Vonmoos et al., 2006), emphasizing the role of solar activity on climate variability during the Late Holocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: We present two 40 year records of monthly coral Sr/Ca ratios from the eastern pole of the Indian Ocean Dipole. A modern coral covers the period from 1968 to 2007. A sub-fossil coral derives from the medieval climate anomaly (MCA) and spans 1100–1140 ad. The modern coral records SST variability in the eastern pole of the Indian Ocean Dipole. A strong correlation is also found between coral Sr/Ca and the IOD index. The correlation with ENSO is asymmetric: the coral shows a moderate correlation with El Niño and a weak correlation with La Niña. The modern coral shows large interannual variability. Extreme IOD events cause cooling 〉 3 °C (1994, 1997) or ~ 2 °C (2006). In total, the modern coral indicates 32 warm/cool events, with 16 cool and 16 warm events. The MCA coral shows 24 warm/cool events, with 14 cool and 10 warm events. Only one cool event could be comparable to the positive Indian Ocean Dipole in 2006. The seasonal cycle of the MCA coral is reduced (〈 50% of to the modern) and the skewness of the Sr/Ca data is lower. This suggests a deeper thermocline in the eastern Indian Ocean associated with a La Niña-like mean state in the Indo-Pacific during the MCA.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Tropical coral reefs, as prominent marine diversity hotspots, are in decline, and long-term studies help to improve understanding of the effects of global warming, sea-level rise, ocean acidification, deterioration of water quality, and disease. Here, we evaluated relative coral abundance and reef accretion rates over the past 9000 years in Belize barrier and atoll reefs, the largest reef system in the Atlantic Ocean. Acropora palmata and Orbicella spp. have been the most common corals. The abundance of competitive, fast-growing acroporids was constant over multi-millennial timescales. A decline in A. cervicornis abundance, however, and three centennial-scale gaps in A. palmata occurrence, suggest that the modern decline in acroporids was not unprecedented. Stress-tolerant corals predominate at the beginning of Holocene successions. Following the improvement of environmental conditions after inundation of the reef pedestal, their abundance has decreased. The abundance of weedy corals has increased during the Holocene underlining the importance of fecundity for the coral community. Reef-accretion rate, as calculated based on 76 new U-series age dates, has decreased over the Holocene and the mean value of 3.36 m kyr −1 is at the lower end of global reef growth compilations and predicted future rates of rise in sea level.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...