GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Springer  (3)
  • Elsvier  (1)
  • Kiel : GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel  (1)
  • 2020-2024  (5)
  • 1
    Schlagwort(e): Forschungsbericht ; Meeresbergbau ; Umweltbelastung
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (39 Seiten, 1,58 MB) , Illustrationen, Diagramme
    Sprache: Deutsch , Englisch
    Anmerkung: Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Förderkennzeichen BMBF 03F0812A , Verbundnummer 01183428 , Sprache der Kurzfassungen: Deutsch, Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-10-06
    Beschreibung: Uncertainties concerning deep-seabed mining relate to the expected impacts on the abyssal benthic and pelagic environment and its ecosystems but also include geopolitical, economic, societal and cultural uncertainty. The uncertain impacts from mining lead to anxiety and a low societal acceptance for the activity and are not the same for everybody at the same time. Hence, uncertainty is an important element of the risk involved in deep-seabed mining. This chapter describes the different risks involved, develops a methodology for risk assessment for the exploitation of marine mineral resources that takes into consideration the state of knowledge and evolving research on deep-sea ecosystems, and informs on possible environmental threshold values in relation to deep-seabed mining operations.
    Materialart: Book chapter , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-07
    Beschreibung: The deep-sea mining industry is currently at a point where large-sale, commercial polymetallic nodule exploitation is becoming a more realistic scenario. At the same time, certain aspects such as the spatiotemporal scale of impacts, sediment plume dispersion and the disturbance-related biological responses remain highly uncertain. In this paper, findings from a small-scale seabed disturbance experiment in the German contract area (Clarion-Clipperton Zone, CCZ) are described, with a focus on the soft-sediment ecosystem component. Despite the limited spatial scale of the induced disturbance on the seafloor, this experiment allowed us to evaluate how short-term (〈 1 month) soft-sediment changes can be assessed based on sediment characteristics (grain size, nutrients and pigments) and metazoan meiofaunal communities (morphological and metabarcoding analyses). Furthermore, we show how benthic measurements can be combined with numerical modelling of sediment transport to enhance our understanding of meiofaunal responses to increased sedimentation levels. The lessons learned within this study highlight the major issues of current deep-sea mining-related ecological research such as deficient baseline knowledge, unrepresentative impact intensity of mining simulations and challenges associated with sampling trade-offs (e.g., replication).
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-02-07
    Beschreibung: Highlights • A mechanistic explanation is provided for the observed CO2 loss in the sediments. • Reactions of CO2 with the sediment lead to significant heating. • The observations were modeled including reactions and losses due to lateral transport. • CO2 leakage will lead to very local effects. Abstract We investigated the effect of an artificial CO2 vent (0.0015−0.037 mol s−1), simulating a leak from a reservoir for carbon capture and storage (CCS), on the sediment geochemistry. CO2 was injected 3 m deep into the seafloor at 120 m depth. With increasing mass flow an increasing number of vents were observed, distributed over an area of approximately 3 m. In situ profiling with microsensors for pH, T, O2 and ORP showed the geochemical effects are localized in a small area around the vents and highly variable. In measurements remote from the vent, the pH reached a value of 7.6 at a depth of 0.06 m. In a CO2 venting channel, pH reduced to below 5. Steep temperature profiles were indicative of a heat source inside the sediment. Elevated total alkalinity and Ca2+ levels showed calcite dissolution. Venting decreased sulfate reduction rates, but not aerobic respiration. A transport-reaction model confirmed that a large fraction of the injected CO2 is transported laterally into the sediment and that the reactions between CO2 and sediment generate enough heat to elevate the temperature significantly. A CO2 leak will have only local consequences for sediment biogeochemistry, and only a small fraction of the escaped CO2 will reach the sediment surface.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-03-14
    Beschreibung: Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyethylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, and shows great promise for rapid field measurements of microplastics in net-collected samples.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...