GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic books.  (2)
  • 2020-2024  (1)
  • 2000-2004  (1)
  • 1
    Keywords: Natural resources -- Brazil -- Management. ; Action research -- Brazil. ; Electronic books.
    Description / Table of Contents: This work evaluates the merits of a widely-used approach to natural resource management, participatory action research (PAR), an approach to resource management that strives to link researchers with farmers and other local residents whose lives are effected by long-range conservation programmes.
    Type of Medium: Online Resource
    Pages: 1 online resource (244 pages)
    Edition: 1st ed.
    ISBN: 9780203508565
    DDC: 333.71609811
    Language: English
    Note: Intro -- PARTICIPATORY ACTION RESEARCH IN NATURAL RESOURCE MANAGEMENT -- Copyright -- Contents -- Preface -- Introduction -- Part I Background -- Chapter 1 Approaches to Resource Conservation -- Traditional Scientific Approaches -- Conventional Methods of Intervention for Natural Resource Management -- Participatory Approaches -- Evaluation of an Alternative -- Chapter 2 Participatory Action Research -- Action Research: A Brief History -- Applications of Participatory Action Research for Natural Resource Management -- Is Participatory Action Research Scientific? -- Conclusion -- Chapter 3 Conceptual Framework -- The Interpretationist Tradition -- An Interpretative Model -- The Extended Rationality Postulate -- The Constructivist Model -- Case Study Methods -- Chapter 4 The Resource Management Problem -- Tropical Deforestation -- The Setting -- PAET: Programa Agro-Ecologico da Transamazônica -- Part II The Participatory Action Research Experience -- Chapter 5 The Partnership with Farmers' Organizations -- The Starting Point -- Development of the PAET Program -- Activities Undertaken -- Results of the Partnership with Farmers' Organizations -- Chapter 6 Case Studies of the Multiple Stakeholders Platform Method -- Assumptions About the Multiple Stakeholders Platform Method Used in Municipal Participatory Planning -- Case I: Uruará -- Case II: Porto de Moz -- Case III: Altamira -- Lessons from the Case Studies -- Conclusions on the Platform Method of Participatory Planning -- The Potential of Participatory Action Research for Testing Methods -- Photo Essay -- Chapter 7 Results at the Farm Level -- Research Development on Perennial Crops and Agroforestry -- The Credit Debate -- Evaluation of PAET from the Farmers' Point of View -- The Learning Process -- Conclusion -- Part III Lessons from the Participatory Action Research in the Transamazônica. , Chapter 8 The Relationship Between Farmers and Researchers: Why There Was No Common Strategy -- Lack of MPST Interest in Sustainable Development and Better Management of Natural Resources -- The Farmers' Perspective -- Failure to Communicate? -- Evaluation of the Partnership Between Researchers and Farmers -- Chapter 9 Deforestation in the Brazilian Amazon: A Comparison of Conventional Diagnoses and Diagnoses Based on PAR -- Conventional Diagnoses -- Proposals to Mitigate Deforestation -- Overview of Conventional Analyses and Solutions -- The LAET Diagnosis -- Proposals for Improving Farming Systems -- Summary of LAET's Diagnosis -- Comparison of PAR and Conventional Diagnoses -- Identification of Applied Research Priorities -- Chapter 10 Evaluation of the Participatory Action Research Approach -- Diagnosis -- Methods of Intervention -- Process Analysis -- Linking Action Research and Basic Research -- Results at the Field Level -- Scaling Up to the National Level -- Conditions for Developing New Participatory Action Research Projects -- Conclusions on Participatory Action Research -- References -- Appendices -- Appendix 1 Acronyms and Abbreviations -- Appendix 2 LAET Publications -- Author Index -- Subject Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Conservation biology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (383 pages)
    Edition: 1st ed.
    ISBN: 9783030851866
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Abbreviations -- Part I: Theory -- To Understand Economics, Follow the Money -- To Understand Ecosystems, Follow the Energy -- Chapter 1: Two Views of Ecology, Evolution, and Conservation -- 1.1 Why I Wrote this Book -- 1.1.1 Dualities Still Impede Conservation Efforts -- 1.2 The Intergovernmental Science-Policy Platform of Biodiversity and Ecosystem Services (IPBES) -- 1.2.1 Targets for Conservation -- 1.3 Evolving Objectives -- 1.3.1 Literature Review -- 1.3.2 Updating Ecosystem Ecology -- References -- Chapter 2: What Can We Learn by Studying Ecosystems that We Can't Learn from Studying Populations? -- 2.1 The Predator-Prey Conundrum -- 2.2 The Serengeti Ecosystem -- 2.2.1 Evolution in the "Ecological Theater" -- 2.2.2 Predator-Prey Interactions Tell Only Part of the Story -- 2.2.3 Evolution in the "Thermodynamic Theater" -- 2.2.3.1 Ruminants -- 2.2.3.2 Adaptation of Ruminants in the Serengeti -- 2.2.3.3 Productivity in the Serengeti -- 2.2.3.4 Fitness Results from Synchronous Evolution -- 2.2.3.5 What Have We Learned? -- References -- Chapter 3: A Thermodynamic Definition of Ecosystems -- 3.1 Ecosystems in the Twentieth Century -- 3.1.1 Cycling of Strontium-90 -- 3.1.2 Cesium-137 in Food Chains -- 3.1.3 Recycling of Isotopes in Norwegian Sheep -- 3.2 Ecological Energetics -- 3.2.1 Is it Time to Bury the Ecosystem Concept? -- 3.2.2 A Thermodynamic Definition of Life -- 3.2.3 A Thermodynamic Definition of Ecosystems -- 3.2.4 The Phase Transition Between Order and Chaos -- References -- Chapter 4: Thermodynamic Characteristics of Ecosystems -- 4.1 Equilibrium -- 4.1.1 The Equilibrium Law -- 4.1.2 Thermodynamic Equilibrium -- 4.2 Open Thermodynamic Systems -- 4.2.1 Ecosystems Are Thermodynamically Open Non-Equilibrium Systems -- 4.2.2 Work Is Performed by Non-equilibrium Systems. , 4.2.3 Advantage of a Thermodynamically Open System -- 4.3 Ecosystems Are Entropic -- 4.4 Ecosystems Are Cybernetic -- 4.4.1 Cybernetic Systems -- 4.4.2 Economic Systems Are Cybernetic -- 4.4.3 The Ecosystem Feedback Function -- 4.4.4 Indirect vs. Direct Feedback -- 4.4.5 Deviation Dampening and Amplifying Feedback -- 4.4.6 Set Points -- 4.5 Ecosystems Are Autocatalytic -- 4.6 Ecosystems Have Boundaries -- 4.7 Ecosystems Are Hierarchical -- 4.7.1 Hierarchy in Physical Systems -- 4.7.2 Hierarchy in Ecological Systems -- 4.7.3 Common Currencies -- 4.7.4 Macro- and Micro-system Models -- 4.7.5 Why an Ecosystem Model that Includes Everything Is Not Possible -- 4.7.6 A Nested Marine Community -- 4.8 Ecosystems Are Deterministic -- 4.9 Ecosystems Are Information Rich -- 4.9.1 An Engineering Definition of Information -- 4.9.2 Information to Facilitate Exchange -- 4.9.3 High Energy Information -- 4.9.4 Low Energy Information -- 4.9.5 Information Theory -- 4.9.6 Genetic Information -- 4.10 Ecosystems Are Non-teleological -- 4.11 Criticisms of Ecosystem Models -- References -- Chapter 5: Ecosystem Control: A Top-Down View -- 5.1 Two Ways to Look at Systems -- 5.2 Composing and Decomposing Trophic Webs -- 5.2.1 Decomposers in Soil Organic Matter -- 5.2.2 Decomposers in Marshes and Mangroves -- 5.3 Control of Systems -- 5.3.1 Top-Down vs. Bottom-Up -- 5.3.2 Top-Down Exogenous Control -- 5.3.3 Exogenous Impacts and Stability -- 5.3.4 Top-Down Endogenous Control -- 5.4 Endogenous Control Through Nutrient Recycling -- 5.4.1 Autocatalysis -- 5.4.2 Control of Microbial Activity -- 5.4.3 Inhibition of Microbial Activity by Leaf Sclerophylly -- 5.4.4 Inhibition of Microbial Activity by Chemical Defenses -- 5.4.5 Inhibition of Microbial Activity by Ecological Stoichiometry -- 5.4.6 The Synchrony Principle -- 5.4.7 The Decay Law -- 5.4.8 Direct Nutrient Cycling. , 5.4.9 The Role of Animals -- 5.5 Marine Systems -- 5.5.1 Nutrient and Energy Recycling -- 5.5.2 Exogenous Control -- 5.6 Control in Lakes -- 5.7 Control in Managed Ecosystems -- References -- Chapter 6: Ecosystem Control: A Bottom-Up View -- 6.1 Species as Arbitrageurs of Energy -- 6.1.1 Relation Between Rate of Flow and Mass in Hydraulic Systems -- 6.1.2 Relation Between Population Biomass and Rate of Energy Flow -- 6.2 Equilibrium -- 6.2.1 Mechanisms of Adjustment -- 6.2.2 Adjustments and Climate Change -- 6.2.3 Bird Populations -- 6.2.4 Dis-equilibrium -- 6.3 Population Instability vs. Ecosystem Instability -- 6.4 Control by Interactions: Direct vs. Indirect -- 6.4.1 Indirect Interactions -- 6.5 Direct Interactions -- 6.5.1 Predator - Prey -- 6.5.2 Mutualisms -- 6.5.3 Competition -- 6.5.3.1 Competition Leads to Complementarity and Formation of Thermodynamic Niches -- 6.5.3.2 Competition in Terrestrial and Marine Systems -- 6.5.3.3 Ecosystem Competition -- 6.5.3.4 Nature, Red in Tooth and Claw -- 6.5.4 Decomposition -- 6.5.5 Parasitism and Disease -- 6.5.6 Commensalism and Amensalism -- 6.5.7 Persistence of Negative Interactions -- References -- Chapter 7: Ecosystem Stability -- 7.1 Background -- 7.2 A Thermodynamic Definition -- 7.2.1 Regime Shift -- 7.2.2 Metastability -- 7.2.3 Pulsed Stability -- 7.2.4 Resistance and Resilience -- 7.3 Species Richness and Functional Stability -- 7.4 Species Richness and Cultural Values -- 7.5 Keystone Species, and Population and Ecosystem Stability -- 7.5.1 Keystone Species in the Yellowstone Region of Wyoming -- References -- Chapter 8: Case Studies of Ecosystem Control and Stability -- 8.1 Walden -- 8.1.1 "Harmony in Nature" -- 8.1.2 Feedback Produces Nature's "Harmony" -- 8.1.3 Feedback Mechanisms -- 8.2 Perturbations in Amazonian Rain Forests -- 8.3 Top-Down Control. , 8.3.1 The San Carlos Project: A Small-scale, Low Intensity, Short Duration Disturbance -- 8.3.1.1 Nutrient Recycling -- 8.3.1.2 Feedback Control: Tree-fall Gaps -- 8.3.1.3 Feedback Control: Shifting Cultivation -- 8.3.1.4 Phosphorus Dynamics -- 8.3.1.5 Tropical Agriculture on Richer Soils -- 8.3.2 The Jarí Project: A Large-scale, High Intensity, Long Duration Disturbance -- 8.4 Bottom-Up Control -- 8.4.1 The El Verde Project -- 8.4.1.1 Perturbation = Ionizing Radiation -- 8.4.1.2 Conclusion -- 8.4.2 The Long-Term Ecological Research Project in Puerto Rico -- 8.4.2.1 Perturbation = Hurricanes -- 8.4.2.2 Conclusion -- 8.4.3 The Lago Guri Island Project -- 8.4.3.1 Perturbation = Elimination of Top Predators -- 8.4.4 The Biological Dynamics of Tropical Rainforest Fragments Project -- 8.4.4.1 Perturbation = Deforestation -- 8.4.4.2 Changes in Intact Forests -- 8.4.4.3 Species Response to Fragmentation -- 8.4.4.4 Conclusion -- 8.5 What Have Case Studies Taught Us About Stability of Tropical Ecosystems? -- 8.5.1 Tropical Ecosystems Are Stable -- 8.5.2 Tropical Ecosystems Are Unstable -- 8.5.3 Energy Flow in Tropical Savannas and Rain Forests -- 8.5.4 Insects in Tropical Ecosystems -- 8.6 Application of Lessons to Other Regions -- 8.6.1 Relevance to Temperate Zones -- 8.6.2 Relevance to Aquatic Ecosystems -- 8.6.3 The Experimental Lakes Project (Ecosystem Control of Species) -- 8.6.4 Lake Mendota Studies (Species Control of Ecosystems) -- 8.7 Case Studies as Tests of Thermodynamic Theory -- References -- Chapter 9: Entropy and Maximum Power -- 9.1 Entropy -- 9.2 Entropy in a Steel Bar -- 9.3 Thermodynamic Equilibrium -- 9.4 Entropic Gradients -- 9.5 Capturing and Storing Entropy -- 9.5.1 Evapotranspiration and Entropy Reduction -- 9.5.2 Life Is a Balance Between Storing and Releasing Entropy -- 9.5.2.1 Potential Entropy -- 9.5.2.2 Entropy and Life. , 9.5.3 The Law of Maximum Entropy Production -- 9.5.4 Energy for Metabolism as Well as Growth -- 9.5.5 Unassisted Entropy Capture Is a Unique Characteristic of Life -- 9.6 Entropy Storage by Ecosystems -- 9.6.1 What Causes Entropy to Be Stored? -- 9.6.2 Entropy Storage by Animals -- 9.7 Capturing Pressure -- 9.8 Entropy and Time -- 9.8.1 Time's Speed Regulator -- 9.8.2 Efficiency of Energy Transformations -- 9.8.3 Passage of Time for Cats -- 9.9 The Maximum Power Principle -- 9.10 Optimum Efficiencies for a Truck and Its Driver -- 9.11 Sustainability -- References -- Chapter 10: A Thermodynamic View of Succession -- 10.1 The Population View -- 10.2 The Thermodynamic View -- 10.2.1 Leaf Area Index and Succession -- 10.2.2 Power Output as a Function of Leaf Area Index -- 10.2.3 What Causes Changes in Leaf Area Index? -- 10.2.4 Maximum Entropy Production Principle -- 10.2.5 Successional Ecosystems Move Further from Thermodynamic Equilibrium -- 10.3 The Strategy of Ecosystem Development -- 10.3.1 A Problem with Odum's Strategy -- 10.3.2 Why Power Output Continues to Increase -- 10.4 Revised Definition of Maximum Power -- 10.4.1 Costs of Ecosystem Stabilization -- 10.4.2 Transactional Costs -- 10.5 Succession, Power Output, and Efficiency -- 10.5.1 Kleiber's Law -- 10.6 Are Ecosystems Spendthrifts? -- 10.7 Interactions Between Species Facilitate Increase in Power Output -- 10.7.1 Facilitation -- 10.7.1.1 Facilitation During Primary Succession -- 10.7.1.2 Facilitation During Secondary Succession -- 10.7.2 Tolerance -- 10.7.3 Inhibition -- 10.8 Intermediate Disturbance Hypothesis -- 10.9 Nutrient Use Efficiency During Succession -- 10.9.1 Succession Following Logging Versus Following Agriculture -- 10.10 Thermodynamic View of Succession: Implications for Resource Management -- References -- Chapter 11: Panarchy -- 11.1 The Universal Cycle of Systems. , 11.1.1 Panarchy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...