GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Document type
Years
Year
  • 1
    Publication Date: 2022-05-01
    Description: The Tyrrhenian Sea plays an important role in the winter deep water formation in the northwestern Mediterranean through the water that enters the Ligurian Sea via the Corsica Channel. Therefore, the study of the impact of the changes on the future climate on the Tyrrhenian circulation and its consequences represents an important issue. Furthermore, the seasonally dependent Tyrrhenian circulation, which is rich in dynamical mesoscale structures, is dominated by the interplay of local climate and the basin-wide Mediterranean circulation via the water transport across its major straits, and an adequate representation of its features represents an important modeling challenge. In this work we examine with a regionally coupled atmosphere–ocean model the changes in the Tyrrhenian circulation by the end of the 21st century under the RCP8.5 emission scenario, their driving mechanisms, and their possible impact on winter convection in the NW Mediterranean. Our model successfully reproduces the main features of the Mediterranean Sea and Tyrrhenian Basin present-day circulation. We find that toward the end of the century the winter cyclonic along-slope stream around the Tyrrhenian Basin becomes weaker. This weakening increases the wind work transferred to the mesoscale structures, which become more intense than at present in winter and summer. We also find that, in the future, the northward water transport across the Corsica Channel towards the Liguro-Provençal basin becomes smaller than today. Also, water that flows through this channel presents a stronger stratification because of a generalized warming with a freshening of upper and a saltening of intermediate waters. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions by the end of the century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-13
    Description: The effect of air-sea coupling in the simulation of the European climate is assessed through a climate type classification that uses surface temperature and precipitation from a regional atmosphere-ocean coupled model and from its atmospheric component. The atmospheric setup in both models is the same, differing only in the representation of the oceanic fields. The simulations cover the present and future-time climate under the RCP8.5 CMIP5 scenario. Climate type distributions obtained from both coupled and uncoupled simulations are similar to those obtained from ERA5 for the 1976–2005 period. Both models simulate colder climate types for present-time in southern and northeastern regions compared to ERA5, possibly due to a weaker influence of the Atlantic circulation, and drier climate types in some western Mediterranean areas. Also, for present-time coupling leads to more humid winters (relatively drier summers) in some zones of north Spain and south France, and drier climates in some western Mediterranean spots. Based on simulations with these models under the RCP8.5 scenario, we find that by the end of the 21st century (2070–2099) the climate type distribution changes in more than 50% of the domain. While both models project the reduction of regions with cold climate types and the expansion of those with hot summers and hot arid climate types, these changes affect a larger area in the coupled simulation. These differences may be related to a drier signal in the coupled simulation, especially during summer, due to the influence of colder surface water in the North Atlantic Ocean and the Mediterranean Sea. Using a climate classification to evaluate the annual cycles of the simulated temperature and precipitation data provides a novel insight into the impact of air-ocean coupling on the representation of the climate, and consequently into the simulated impact on ecosystems and human activities in Europe.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...