GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-16
    Description: Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). This diverse array of phenomena includes blooms of toxic, microscopic algae that lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life. There are also non-toxic HABs that cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term “HAB” also applies to non-toxic macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters. The frequency, spatial extent, and economic impact of HABs have all expanded in recent decades, in parallel with, and sometimes a result of, the world’s increasing exploitation on the coastal zone for shelter, food, recreation, and commerce. HABs are complex oceanographic phenomena that require multidisciplinary study ranging from molecular and cell biology to large-scale field surveys, numerical modelling, and remote sensing from space. Multi-lateral international programmes and bilateral initiatives are bringing scientists together from different countries and disciplines in a concerted attack on this complex and multi-faceted issue. Our understanding of these phenomena is increasing dramatically, and with this understanding come technologies and management tools that can reduce HAB incidence and impact. More effective HAB management is sure to be one major outcome of the growing investment in the Global Ocean Observing System. HABs will always be with us, and in the next few decades at least, are likely to continue to expand in geographic extent and frequency. Nevertheless, scientifically based management should permit full exploitation of fisheries, recreational, and commercial resources, despite the recurrent and diverse threat that HABs pose. This series of lectures is dedicated to the memory of the noted Danish oceanographer and first chairman of the Commission, Dr Anton Frederick Bruun. The "Anton Bruun Memorial Lectures" were established in accordance with Resolution 19 of the Sixth Session of the IOC Assembly, in which the Commission proposed that important inter-session developments be summarized by speakers in the fields of solid earth studies, physical and chemical oceanography and meteorology, and marine biology.
    Description: Published
    Description: Refereed
    Keywords: Harmful algal blooms ; HAB ; Anton Bruun Memorial Lecture ; ASFA_2015::O::Oceanographers ; ASFA_2015::M::Marine biology ; ASFA_2015::A::Algal blooms
    Repository Name: AquaDocs
    Type: Report
    Format: 28pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., Landsberg, J. H., Lefebvre, K. A., Provoost, P., Richlen, M. L., Smith, J. L., Solow, A. R., & Trainer, V. L. Marine harmful algal blooms (HABs) in the united states: history, current status and future trends. Harmful Algae, 102, (2021): 101975, https://doi.org/10.1016/j.hal.2021.101975.
    Description: Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.
    Description: Support for DMA, MLR, and DMK was provided through the Woods Hole Center for Oceans and Human Health (National Science Foundation grant OCE-1840381 and National Institutes of Health grants NIEHS‐1P01-ES028938–01) and the U.S. National Office for Harmful Algal Blooms with funding from NOAA's National Centers for Coastal Ocean Science (NCCOS) through the Cooperative Institute for the North Atlantic Region (CINAR) (NA14OAR4320158, NA19OAR4320074). Funding for KAL and DMA was provided by the National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Competitive Research Program under award NA20NOS4780195 to the Woods Hole Oceanographic Institution and NOAA's Northwest Fisheries Science Center. We also acknowledge support for A.H. from the National Oceanic and Atmospheric Administration [NOAA] Office of Ocean and Coastal Resource Management Award NA19NOS4780183, C.J.G from NOAA-MERHAB (NA19NOS4780186) and (NA16NOS4780189) for VLT Support was also received for JLS, CJG, and VLT from NOAA-NCCOS-ECOHAB under awards NA17NOS4780184 and NA19NOS4780182. This is ECOHAB publication number ECO972.
    Keywords: HAB ; Harmful algal bloom ; Red tide ; Eutrophication ; Time series ; HAEDAT
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-15
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lefebvre, K., Fachon, E., Bowers, E., Kimmel, D., Snyder, J., Stimmelmayr, R., Grebmeier, J., Kibler, S., Hardison, D., Anderson, D., Kulis, D., Murphy, J., Gann, J., Cooper, D., Eisner, L., Duffy-Anderson, J., Sheffield, G., Pickart, R., Mounsey, A., Willis, M. L., Stabeno, P., & Siddon, E. Paralytic shellfish toxins in Alaskan Arctic food webs during the anomalously warm ocean conditions of 2019 and estimated toxin doses to Pacific walruses and bowhead whales. Harmful Algae, 114, (2022): 102205, https://doi.org/10.1016/j.hal.2022.102205.
    Description: Climate change-related ocean warming and reduction in Arctic sea ice extent, duration and thickness increase the risk of toxic blooms of the dinoflagellate Alexandrium catenella in the Alaskan Arctic. This algal species produces neurotoxins that impact marine wildlife health and cause the human illness known as paralytic shellfish poisoning (PSP). This study reports Paralytic Shellfish Toxin (PST) concentrations quantified in Arctic food web samples that include phytoplankton, zooplankton, benthic clams, benthic worms, and pelagic fish collected throughout summer 2019 during anomalously warm ocean conditions. PSTs (saxitoxin equivalents, STX eq.) were detected in all trophic levels with concentrations above the seafood safety regulatory limit (80 μg STX eq. 100 g−1) in benthic clams collected offshore on the continental shelf in the Beaufort, Chukchi, and Bering Seas. Most notably, toxic benthic clams (Macoma calcarea) were found north of Saint Lawrence Island where Pacific walruses (Odobenus rosmarus) are known to forage for a variety of benthic species, including Macoma. Additionally, fecal samples collected from 13 walruses harvested for subsistence purposes near Saint Lawrence Island during March to May 2019, all contained detectable levels of STX, with fecal samples from two animals (78 and 72 μg STX eq. 100 g−1) near the seafood safety regulatory limit. In contrast, 64% of fecal samples from zooplankton-feeding bowhead whales (n = 9) harvested between March and September 2019 in coastal waters of the Beaufort Sea near Utqiaġvik (formerly Barrow) and Kaktovik were toxin-positive, and those levels were significantly lower than in walruses (max bowhead 8.5 μg STX eq. 100 g−1). This was consistent with the lower concentrations of PSTs found in regional zooplankton prey. Maximum ecologically-relevant daily toxin doses to walruses feeding on clams and bowhead whales feeding on zooplankton were estimated to be 21.5 and 0.7 μg STX eq. kg body weight−1 day−1, respectively, suggesting that walruses had higher PST exposures than bowhead whales. Average and maximum STX doses in walruses were in the range reported previously to cause illness and/or death in humans and humpback whales, while bowhead whale doses were well below those levels. These findings raise concerns regarding potential increases in PST/STX exposure risks and health impacts to Arctic marine mammals as ocean warming and sea ice reduction continue.
    Description: This research was funded by ECOHAB project number NA20NOS4780195 (to KAL and DMA), the North Pacific Research Board (NPRB Arctic Integrated Ecosystem Research Program), the Bureau of Ocean and Energy Management (BOEM), the National Science Foundation (NSF) Office of Polar Programs (OPP-1823002 and OPP-1733564), the National Oceanic and Atmospheric Administration (NOAA) Arctic Research program (through the Cooperative Institute for the North Atlantic Region [CINAR; Grants NA14OAR4320158 and NA19OAR4320074] and the Cooperative Institute for the North Atlantic Region NOAA CINAR Grant # 22309.07 UMCES [to JG at the University of Maryland Center for Environmental Science]), the Alaska Sustainable Salmon Fund project #51002, the Alaska Department of Fish and Game, the North Slope Borough Department of Wildlife management, the U.S. National Park Service Shared Beringian Heritage Program grant # P21AC12214-00, and NOAA's Northwest Fisheries Science Center (NWFSC) and Alaska Fisheries Science Center (AFSC). We also thank the RACE Groundfish and Shellfish Assessment Programs of the NOAA Fisheries AFSC and the crew of the F/V Knight for their assistance in securing additional benthic biological samples used in this study. Collection of harvested bowhead whale samples was conducted under NMFS Permit #21386. Collection of harvested walrus samples was conducted under US Fish and Wildlife permit #MA-041309-5. This is ECOHAB publication #1000.
    Keywords: harmful algal blooms ; algal toxins ; trophic transfer ; saxitoxin ; paralytic shellfish poisoning ; marine mammals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...