GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 286 (2009): 546-555, doi:10.1016/j.epsl.2009.07.020.
    Description: During the Last Glacial Maximum much of North America was covered by the Laurentide ice sheet. Its melting during termination 1 led to systematic changes in proglacial lake formation, continental runoff, and possibly North Atlantic Meridional Overturning Circulation. The accompanying change in chemical weathering rates in the interior of North America throughout the deglaciation resulted in a pronounced change in seawater Pb isotope composition in the western North Atlantic Ocean. Here we present the first high-resolution records of seawater Pb isotope variations of North Atlantic Deep Water extracted from authigenic Fe-Mn oxyhydroxides in three sediment cores (51GGC, 1790 m depth; 31GGC, 3410 m depth; 12JPC, 4250 m depth) from the Blake Ridge off Florida. These data reveal a striking excursion from relatively unradiogenic 206Pb/204Pb as low as 18.93 towards highly radiogenic Pb isotope compositions that was initiated during the Bølling-Allerød interstadial and was most pronounced in both intermediate and deep waters during and after the Younger Dryas (206Pb/204Pb as high as 19.38 at 8.8 ka in 4250 m). This pattern is interpreted to be a direct function of increased inflow of continent-derived radiogenic Pb into the western North Atlantic, supplied through chemical weathering of North American rocks that had been eroded and freshly exposed during the preceding glacial cycle. These sediment-derived data are complemented by new laser ablation Pb isotope data from a ferromanganese crust from the Blake Plateau at 850 m water depth, which show only small glacial-interglacial Pb isotope variations of the Florida Current (206Pb/204Pb between 19.07 and 19.16). The lack of change in the Blake Plateau record at the same time as the radiogenic excursion in the deeper sediments supports a northern origin of the pulse of radiogenic Pb. After the Younger Dryas, the deep western North Atlantic has experienced a persistent highly radiogenic Pb supply that was most pronounced during the first half of the Holocene and still lasts until today.
    Description: Funding for this project was provided by grant TH-12 02-2 of ETH Zurich.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 266 (2008): 61-77, doi:10.1016/j.epsl.2007.10.037.
    Description: A high-resolution authigenic Nd isotope record has been extracted from the Fe-Mn oxyhydroxide fraction of drift sediments along the Blake Ridge in the North Atlantic. These sediments facilitate reconstruction of the timing and extent of major hydrographic changes in the western North Atlantic since the Last Glacial Maximum (LGM). This is one of the few locations where sediments were deposited in the major flow path of the Western Boundary Undercurrent (WBUC), which transports North Atlantic Deep Water (NADW) southward at the present day. The hydrodynamic setting, however, also causes problems. Authigenic Nd isotope compositions similar to the typical present-day NADW εNd value of –13.5 ± 0.5 were only extracted from sediments located within the main water body of the WBUC coinciding with the highest along slope current velocity below 3200 m water depth. Above this depth the authigenic Nd isotopic composition is more radiogenic than measured in a nearby seawater profile and appears to be influenced by downslope and lateral sediment redistribution. Our data suggest that these radiogenic signals were formed at shallow depths in Florida current waters, compromising the recorded ambient deep water Nd isotope signal in the Blake Ridge Fe-Mn oxyhydroxide coatings from intermediate depths during the Holocene and the deglaciation. The unradiogenic Nd isotopic composition typical of present-day NADW is not detectable along the Blake Ridge for any water depth during the LGM. Unlike the deglacial and Holocene sections, the intermediate core from 1790 m water depth did not experience significant sediment focussing during the LGM, in accord with the higher current velocities at this depth, suggesting that at this site an ambient LGM bottom water Nd isotope signal was recorded. Assuming this to be correct, our results indicate that the εNd of the shallower glacial equivalent of NADW, the Glacial North Atlantic Intermediate Water (GNAIW) may have been as radiogenic as –9.7 ± 0.4. Since the authigenic Nd isotope compositions of the Holocene and the deglacial sections of the intermediate depth sediment core were biased towards a shallow water signal, this first determination of a GNAIW εNd for the LGM will have to be corroborated by results from other locations and archives. The LGM and deglacial sediments below 3400 m water depth bear no evidence of an ambient deep water εNd as unradiogenic as -13.5. Although the deep core sites also experienced enhanced degrees of sediment focusing before the Younger Dryas, the εNd values of between -11 and – 10 are more readily explained in terms of increased presence of Southern Source Waters. If this is the case, the change to Nd isotopic compositions that reflect a modern circulation pattern, including the presence of Lower NADW, only occurred after the Younger Dryas.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bretschneider, L., Hathorne, E. C., Bolton, C. T., Gebregiorgis, D., Giosan, L., Gray, E., Huang, H., Holbourn, A., Kuhnt, W., & Frank, M. Enhanced late miocene chemical weathering and altered precipitation patterns in the watersheds of the Bay of Bengal recorded by detrital clay radiogenic isotopes. Paleoceanography and Paleoclimatology, 36(9), (2021): e2021PA004252, https://doi.org/10.1029/2021PA004252.
    Description: The late Miocene was a period of declining CO2 levels and extensive environmental changes, which likely had a large impact on monsoon strength as well as on the weathering and erosion intensity in the South Asian Monsoon domain. To improve our understanding of these feedback systems, detrital clays from the southern Bay of Bengal (International Ocean Discovery Program Site U1443) were analyzed for the radiogenic isotope compositions of Sr, Nd, and Pb to reconstruct changes in sediment provenance and weathering regime related to South Asian Monsoon rainfall from 9 to 5 Ma. The 100 kyr resolution late Miocene to earliest Pliocene record suggests overall low variability in the provenance of clays deposited on the Ninetyeast Ridge. However, at 7.3 Ma, Nd and Pb isotope compositions indicate a switch to an increased relative contribution from the Irrawaddy River (by ∼10%). This shift occurred during the global benthic δ13C decline, and we suggest that global cooling and increasing aridity resulted in an eastward shift of precipitation patterns leading to a more focused erosion of the Indo-Burman Ranges. Sr isotope compositions were decoupled from Nd and Pb isotope signatures and became more radiogenic between 6 and 5 Ma. Grassland expansion generating thick, easily weatherable soils may have led to an environment supporting intense chemical weathering, which is likely responsible for the elevated detrital clay 87Sr/86Sr ratios during this time. This change in Sr isotope signatures may also have contributed to the late Miocene increase of the global seawater Sr isotope composition.
    Description: This research used samples and data provided by the International Ocean Discovery Program and was funded by the German Research Foundation (DFG) (grants HA 5751/6-1 & -2). C. T. Bolton acknowledges funding from the French ANR project iMonsoon (ANR-16-CE01-0004-01) and IODP France. W. Kuhnt acknowledges funding from the DFG (grant Ku649/36-1).
    Keywords: Clay radiogenic isotopes ; Late Miocene ; South Asian Monsoon ; Chemical weathering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(2), (2020): e2019GC008414, doi:10.1029/2019GC008414.
    Description: X‐ray fluorescence (XRF) core scanning of marine and lake sediments has been extensively used to study changes in past environmental and climatic processes over a range of timescales. The interpretation of XRF‐derived element ratios in paleoclimatic and paleoceanographic studies primarily considers differences in the relative abundances of particular elements. Here we present new XRF core scanning data from two long sediment cores in the Andaman Sea in the northern Indian Ocean and show that sea level related processes influence terrigenous inputs based proxies such as Ti/Ca, Fe/Ca, and elemental concentrations of the transition metals (e.g., Mn). Zr/Rb ratios are mainly a function of changes in median grain size of lithogenic particles and often covary with changes in Ca concentrations that reflect changes in biogenic calcium carbonate production. This suggests that a common process (i.e., sea level) influences both records. The interpretation of lighter element data (e.g., Si and Al) based on low XRF counts is complicated as variations in mean grain size and water content result in systematic artifacts and signal intensities not related to the Al or Si content of the sediments. This highlights the need for calibration of XRF core scanning data based on discrete sample analyses and careful examination of sediment properties such as porosity/water content for reliably disentangling environmental signals from other physical properties. In the case of the Andaman Sea, reliable extraction of a monsoon signal requires accounting for the sea level influence on the XRF data.
    Description: The staff at the Bremen Core Repository is thanked for their help with core handling and Sam Müller at the University of Kiel provided technical assistance with the XRF scanner. We thank two anonymous reviewers for their insightful comments that improved the manuscript significantly. This work was partially funded through DFG Grant HA 5751/3. P. A. and K. N.‐K. acknowledge support from UK‐IODP and Natural and Environment Research Council, UK. The authors express their thanks to all those who contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01) and Expedition 353. The data set supporting the conclusions of this article is available in the PANGEA repository (doi: https://doi.pangaea.de/10.1594/PANGAEA.910533).
    Description: 2020-07-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-12
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Laukert, G., Peeken, I., Bauch, D., Krumpen, T., Hathorne, E. C., Werner, K., Gutjahr, M., & Frank, M. Neodymium isotopes trace marine provenance of Arctic sea ice. Geochemical Perspectives Letters, 22, (2022): 10–15, https://doi.org/10.7185/geochemlet.2220.
    Description: Radiogenic neodymium (Nd) isotopes (ɛNd) have the potential to serve as a geochemical tracer of the marine origin of Arctic sea ice. This capability results from pronounced ɛNd differences between the distinct marine and riverine sources, which feed the surface waters from which the ice forms. The first dissolved Nd isotope and rare earth element (REE) concentration data obtained from Arctic sea ice collected across the Fram Strait during RV Polarstern cruise PS85 in 2014 confirm the incorporation and preservation of the parental surface seawater ɛNd signatures despite efficient REE rejection. The large ɛNd variability between ice floes and within sea ice cores (−32 to −10) reflects changes in water mass distribution during ice growth and drift from the central Arctic Ocean to Fram Strait. In addition to the parental seawater composition, our new approach facilitates the reconstruction of the transfer of matter between the atmosphere, the sea ice and the ocean. In conjunction with satellite-derived drift trajectories, we enable a more accurate assessment of sea ice origin and spatiotemporal evolution, benefiting studies of sea ice biology, biodiversity, and biogeochemistry.
    Description: We acknowledge financial support by the German Federal Ministry of Education and Research (Grant BMBF 03F0776 and 03G0833) and the Ministry of Education and Science of the Russian Federation. GL also acknowledges financial support from the Ocean Frontier Institute through an award from the Canada First Research Excellence Fund.
    Keywords: Arctic Ocean ; Fram Strait ; Greenland ; Transpolar Drift ; Siberian Shelf ; sea ice ; snow ; seawater ; provenance tracers ; neodymium isotopes ; oxygen isotopes ; rare earth elements ; water masses ; circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bretschneider, L., Hathorne, E. C., Huang, H., Luebbers, J., Kochhann, K. G. D., Holbourn, A., Kuhnt, W., Thiede, R., Gebregiorgis, D., Giosan, L., & Frank, M. Provenance and weathering of clays delivered to the Bay of Bengal during the middle Miocene: linkages to tectonics and monsoonal climate. Paleoceanography and Paleoclimatology, 36(2), (2021): e2020PA003917, https://doi.org/10.1029/2020PA003917.
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8–9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16–15 Ma) and across the major global cooling (~13.9–13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area toward the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Description: This research used samples and data provided by the International Ocean Discovery Program and was funded by the German Research Foundation (DFG) (grants HA 5751/6‐1 and HA 5751/6‐2, KU 649/36‐1, and TH 1317‐8 and TH 1317‐9). Open access funding enabled and organized by Projekt DEAL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...