GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (1)
  • 2015-2019  (2)
Document type
Keywords
Publisher
Language
Years
Year
  • 1
    Publication Date: 2022-04-04
    Description: The influence of the exceptionally strong typhoon Mangkhut on the availability of nutrients and changes in primary production were studied in the northern South China Sea in September 2018. A tight station grid was sampled to analyze major nutrients, chlorophyll_a, particulate and dissolved organic carbon and nitrogen. Based on interpolated profiles, nutrients and organic matter budgets were determined for the upper 100 m of the water column prior to and after Mangkhut's passage. An upper layer of 100 m was found to reflect the important changes by the typhoon. Considerable differences between the on‐shelf, shelf edge and the deep‐sea stations were determined. Nitrate and phosphate increased by about 80% and 36% on the shelf, respectively, and both by almost 40% at the shelf edge. The open deep‐sea part of the study area reflects some deviating results that may be caused by just displacement of water or by mixing water of different origin. However, right on Mangkhut's track on the shelf even contact between surface waters and bottom waters was enabled, increasing phosphate and silicate, but declining nitrate. The inventory of organic carbon of the upper 100 m of the study area (138,000 km2) of 92 Gmol had increased within a few days after the typhoon's passage by 5 Gmol on the shelf and about 2 Gmol in the shelf edge area. Chlorophyll_a doubled during our stay and might have reached a factor of 3 increase in the subsequent time by nitrate supply and excess phosphate.
    Description: Plain Language Summary: The influence of the super typhoon Mangkhut on the waters of the northern South China Sea was studied in September 2018. Nutrients and organic material were measured on 63 stations from the Chinese research vessel HAI YANG DI ZHI SHI HAO. Amounts of nutrients and biogenic matter were calculated for the on‐shelf, shelf edge and deep‐sea stations for the pre‐ and post‐Mangkhut period. An important finding was that the stations of the different areas, on‐shelf, shelf edge and the deep‐sea appeared to be differently impacted by Mangkhut. Even differences between the stations right on its track and in the other parts of the study area were found. In general, nutrients were supplied in enormous amounts and caused immediate algae growth. Moreover, enough nutrients were supplied to support algae growth for a couple of weeks. In summary, it was found that Manghut's upper water column mixing and shifting caused an almost tripling of primary production compared to the normal situation.
    Description: Key Points: The typhoon Mangkhut clearly impacted the water column differently on the continental shelf, at the shelf edge and in the deep sea. On Mangkhut's track a maximum nitrate supply of 162 mmol m−2 was caused by induced upwelling at the shelf edge. The chlorophyll inventory of 2.8 Gg was almost tripled by contributing 4.7 Gg estimated from an additional nutrient supply.
    Description: Federal Ministry of Education and Research, BMBF http://dx.doi.org/10.13039/501100002347
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936352
    Description: https://doi.pangaea.de/10.1594/PANGAEA.936096
    Keywords: ddc:577.7
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-22
    Description: Environmental context: Halocarbons are trace gases important in atmospheric ozone chemistry whose biogenic production – among other factors – depends on light-induced stress of marine algae. Several studies have confirmed this effect in laboratory experiments but knowledge in natural systems remains sparse. In mesocosm experiments, which are a link between field and laboratory studies, we observed that the influence of natural levels of ultraviolet radiation on halocarbon dynamics in the marine surface waters was either insignificant or concealed by the complex interactions in the natural systems. Abstract: The aim of the present study was to evaluate the influence of different light quality, especially ultraviolet radiation (UVR), on the dynamics of volatile halogenated organic compounds (VHOCs) at the sea surface. Short term experiments were conducted with floating gas-tight mesocosms of different optical qualities. Six halocarbons (CH3I, CHCl3, CH2Br2, CH2ClI, CHBr3 and CH2I2), known to be produced by phytoplankton, together with a variety of biological and environmental variables were measured in the coastal southern Baltic Sea and in the Raunefjord (North Sea). These experiments showed that ambient levels of UVR have no significant influence on VHOC dynamics in the natural systems. We attribute it to the low radiation doses that phytoplankton cells receive in a normal turbulent surface mixed layer. The VHOC concentrations were influenced by their production and removal processes, but they were not correlated with biological or environmental parameters investigated. Diatoms were most likely the dominant biogenic source of VHOCs in the Baltic Sea experiment, whereas in the Raunefjord experiment macroalgae probably contributed strongly to the production of VHOCs. The variable stable carbon isotope signatures (δ13C values) of bromoform (CHBr3) also indicate that different autotrophic organisms were responsible for CHBr3 production in the two coastal environments. In the Raunefjord, despite strong daily variations in CHBr3 concentration, the carbon isotopic ratio was fairly stable with a mean value of –26 ‰. During the declining spring phytoplankton bloom in the Baltic Sea, the δ13C values of CHBr3 were enriched in 13C and showed noticeable diurnal changes (–12 ‰ ± 4). These results show that isotope signature analysis is a useful tool to study both the origin and dynamics of VHOCs in natural systems.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-22
    Description: Environmental context: Once released to the atmosphere, halocarbons are involved in key chemical reactions. Stable carbon isotope measurements of halocarbons can provide valuable information on their sources and fate in the atmosphere. Here, we report δ13C values of 13 polyhalomethanes released from brown algae, which may provide a basis for inferring their sources and fate in future studies. Abstract: Halocarbons are important vectors of reactive halogens to the atmosphere, where the latter participate in several key chemical processes. An improved understanding of the biogeochemical controls of the production–destruction equilibrium on halocarbons is of vital importance to address potential future changes in their fluxes to the atmosphere. Carbon stable isotope ratios of halocarbons could provide valuable additional information on their sources and fate that cannot be derived from mixing ratios alone. We determined the δ13C values of 13 polyhalomethanes from three brown algae species (Laminaria digitata, Fucus vesiculosus, Fucus serratus) and one seagrass species (Zostera noltii). The δ13C values were determined in laboratory incubations under variable environmental conditions of light, water levels (to simulate tidal events) and addition of hydrogen peroxide (H2O2). The δ13C values of the polyhalomethanes ranged from –42.2 ‰ (±3.5 s.d.) for CHCl3 to 6.9 ‰ (±4.5) for CHI2Br and showed a systematic effect of the halogen substituents that could empirically be described in terms of linear free energy relationships. We further observed an enrichment in the δ13C of the polyhalomethanes with decreasing polyhalomethane yield that is attributed to the competing formation of halogenated ketones. Though variable, the isotopic composition of polyhalomethanes may provide useful additional information to discriminate between marine polyhalomethane sources.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...