GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-22
    Description: The relative seismic velocity variations possibly associated to large earthquakes can be readily monitored via cross-correlation of seismic noise. In a recently published study, more than 2 yr of continuous seismic records have been analysed from three stations surrounding the epicentre of the 2009 April 6, M w 6.1 L'Aquila earthquake, observing a clear decrease of seismic velocities likely corresponding to the co-seismic shaking. Here, we extend the analysis in space, including seismic stations within a radius of 60 km from the main shock epicentre, and in time, collecting 5 yr of data for the six stations within 40 km of it. Our aim is to investigate how far the crustal damage is visible through this technique, and to detect a potential post-seismic recovery of velocity variations. We find that the co-seismic drop in velocity variations extends up to 40 km from the epicentre, with spatial distribution (maximum around the fault and in the north–east direction from it) in agreement with the horizontal co-seismic displacement detected by global positioning system (GPS). In the first few months after L'Aquila earthquake, the crust's perturbation in terms of velocity variations displays a very unstable behaviour, followed by a slow linear recovery towards pre-earthquake conditions; by almost 4 yr after the event, the co-seismic drop of seismic velocity is not yet fully recovered. The strong oscillations of the velocity changes in the first months after the earthquake prevent to detect the fast exponential recovery seen by GPS data. A test of differently parametrized fitting curves demonstrate that the post-seismic recovery is best explained by a sum of a logarithmic and a linear term, suggesting that processes like viscoelastic relaxation, frictional afterlip and poroelastic rebound may be acting concurrently.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The relative seismic velocity variations possibly associated to large earthquakes can be readily monitored via cross-correlation of seismic noise. In a recently published study, more than 2 yr of continuous seismic records have been analysed from three stations surrounding the epicentre of the 2009 April 6, Mw 6.1 L’Aquila earthquake, observing a clear decrease of seismic velocities likely corresponding to the co-seismic shaking. Here, we extend the analysis in space, including seismic stations within a radius of 60 km from the main shock epicentre, and in time, collecting 5 yr of data for the six stations within 40 km of it. Our aim is to investigate how far the crustal damage is visible through this technique, and to detect a potential post-seismic recovery of velocity variations. We find that the co-seismic drop in velocity variations extends up to 40 km from the epicentre, with spatial distribution (maximum around the fault and in the north– east direction from it) in agreement with the horizontal co-seismic displacement detected by global positioning system (GPS). In the first few months after L’Aquila earthquake, the crust’s perturbation in terms of velocity variations displays a very unstable behaviour, followed by a slow linear recovery towards pre-earthquake conditions; by almost 4 yr after the event, the co-seismic drop of seismic velocity is not yet fully recovered. The strong oscillations of the velocity changes in the first months after the earthquake prevent to detect the fast exponential recovery seen by GPS data. A test of differently parametrized fitting curves demonstrate that the post-seismic recovery is best explained by a sum of a logarithmic and a linear term, suggesting that processes like viscoelastic relaxation, frictional afterlip and poroelastic rebound may be acting concurrently.
    Description: Published
    Description: 604-6011
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Time-series analysis; Interferometry; Computational seismology; Europe ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: N/A
    Description: Published
    Description: 159-162
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: N/A or not JCR
    Description: restricted
    Keywords: centro allerta tsunami ; tsunami warning system ; Mediterraneo ; Mediterranean Sea ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Naples is one of the most vulnerable cities in the world because it is threatened by several natural and man-made hazards: earthquakes, volcanic eruptions, tsunamis, landslides, hydrogeological disasters, and morphologic alterations due to human interference. In addition, the risk is increased by the high density of population (Naples and the surrounding area are among the most populated in Italy), and by the type and condition of buildings and monuments. In light of this, it is crucial to assess the ground shaking suffered by the city. To create a ShakeMap atlas for the region and to reconstruct the seismic history of the city from historical to recent times, we gather information from the most reliable and complete databases of macroseismic intensity records dating back to the eleventh century. The events felt in Naples cover a time span ranging from 1293 to 1999. The first event (Mw 5.8) was an earthquake in 1293, located in the southern Apennines, at a distance of 100 km from Naples. The most recent event was an earthquake of moderate magnitude in 1999, located beneath Vesuvius (Fig. 1). In the previous release of the macroseismic databases, two additional events associated with the volcanic activity of Vesuvius in 62 and 79 A.D. were included. They are not included in the new release of the databases because they occurred before 1000 A.D., and likewise they have been not included in this atlas because they are too ancient to be incorporated into any time and magnitude window of completeness. For instrumental events (e.g., after 1980), we merge these macroseismic records with strong-motion data. Basically, we integrate information from five Italian databases and catalogs. This gives us the opportunity to explore several sources of information, expanding the completeness of our data set in both time and magnitude. A total of 84 earthquakes have been analyzed. For each event, we compute the shakemap set (Wald et al., 1999; Michelini et al., 2008; Worden et al., 2010) using an ad hoc implementation developed for this application, with (1) specificground-motion prediction equations (GMPEs) accounting for the different attenuation properties in volcanic areas compared with the tectonic ones, and (2) detailed local microzonation to include the site effects. These shakemaps are provided in terms of Mercalli–Cancani–Sieberg intensity (MCS hereinafter) and peak ground acceleration (PGA). For PGA, the maps are provided in terms of median values and 16th and 84th percentiles, to quantify the epistemic uncertainties associated with the ground-motion measurements. In our prospective, the ShakeMap atlas has a dual application. On one hand, it is an important instrument in seismic risk management because it quantifies the level of shaking suffered by a city during its history, and it could be implemented to the quantification of the number of people exposed to certain degrees of shaking (Allen et al., 2009). Intensity data provide the evaluation of the damage caused by earthquakes; the damage is closely connected with the ground shaking, building type, and vulnerability, and it is not possible to separate these contributions. On the other hand, the atlas can be used as starting point for Bayesian estimation of seismic hazard. This technique allows for the merging of the more standard approach adopted, for example, in the compilation of the national hazard map of Italy used in this Bayesian framework as prior mode, with the site-type approach to the purpose of likelihood function (Selva and Sandri, 2013). The site-type technique is based on ground shaking data recorded in a given area; because the majority of earthquakes occurred when no seismometers were available, site data are mainly from macroseismic evaluation, that is, the felt effect is reconstructed from historical documents. The first two sections of the paper describe the databases and catalogs used, and the specific shakemap configuration applied. In the final section, we analyse the completeness of the atlas in terms of time for different magnitude/intensity thresholds, adopting and comparing two different strategies, one based mainly on historical analysis and the other on statistical evaluation.
    Description: Published
    Description: 963-972
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Shake Map ; Historical Seismology ; Ground Shaking ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-23
    Description: A seguito della sequenza sismica iniziata il 29 dicembre 2013 con il terremoto di magnitudo (ML) 4.9 alle 16.08 UTC, localizzato tra le province di Caserta e di Benevento dai sismologi in turno presso la sala di sorveglianza sismica [Basili, 2011] dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV), sono stati predisposti diversi interventi volti a migliorare il monitoraggio sismico e geodetico nell’area interessata dalla crisi sismica. L’azione coordinata tra il personale dell’INGV delle sedi di Roma e di Grottaminarda (Avellino) ha consentito, fra le diverse attività, il ripristino delle stazioni sismiche permanenti della Rete Sismica Nazionale (RSN [Amato and Mele, 2008; Delladio, 2011]) esistenti in zona ma mal funzionanti durante le prime ore della sequenza, e l’installazione ex-novo di due stazioni temporanee in trasmissione UMTS a sud-ovest e a sud-est dell’area epicentrale. Benché la copertura dell’area non fosse ottimale, è stato sempre garantito il servizio di sorveglianza sismica avendo localizzato terremoti ben al di sotto della soglia di comunicazione definita nella Convenzione vigente tra INGV e Dipartimento della Protezione Civile (DPC) pari a ML ≥ 2.5. Nelle prime 24 ore della sequenza sono stati infatti localizzati più di 70 terremoti di magnitudo compresa fra 1.0 e 2.0. In questo breve rapporto tecnico sono illustrate, dopo un inquadramento della sequenza sismica e del contesto sismologico in cui si colloca, le considerazioni che hanno portato all’attivazione del Pronto Intervento Sismico INGV, le attività svolte e le tempistiche rispettate.
    Description: Published
    Description: 1-24
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: N/A or not JCR
    Description: open
    Keywords: Emergency ; Seismic monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Real-time seismology has made significant improvements in recent years, with source parameters now available within a few tens of minutes after an earthquake. It is likely that this time will be further reduced, in the near future, by means of increased efficiency in real-time transmission,increasingdatacoverageandimprovementofthemethodologies.Inthiscontext, together with the development of new ground motion predictive equations (GMPEs) that are abletoaccountforsourcecomplexity,thegenerationofstronggroundmotionshakingmapsin quasi-real time has become ever more feasible after the occurrence of a damaging earthquake. However, GMPEs may not reproduce reliably the ground motion in the near-source region where the finite fault parameters have a strong influence on the shaking. Inthispaperwetestwhetheraccountingforsource-relatedeffectsiseffectiveinbettercharacterizingthegroundmotion.WeintroduceamodificationoftheGMPEswithintheShakeMap softwarepackage,andsubsequentlytesttheaccuracyofthenewlygeneratedshakemapsinpredictingthegroundmotion.ThetestisconductedbycontrollingtheperformanceofShakeMap as we decrease the amount of the available information. We then update ShakeMap with the GMPE modified with a corrective factor accounting for source effects, in order to better constrain these effects that likely influence the level of (near-source) ground shaking. Weinvestigatetwowell-recordedearthquakesfromJapan(the2000Tottori, Mw 6.6,andthe 2008 Iwate-Miyagi, Mw7.0, events) where the instrumental coverage is as dense as needed to ensure an objective appraisal of the results. The results demonstrate that the corrected GMPE can capture only some aspects of the ground shaking in the near-source area, neglecting other multidimensional effects, such as propagation effects and local site amplification.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile(DPC)under the contract 2007–2009 DPC-INGVS3project
    Description: Published
    Description: 1836-1848
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions ; Earthquake source observation ; Computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: I parametri dei terremoti registrati dalla Rete Sismica Nazionale Italiana, localizzati nella sala di sorveglianza sismica dell’INGV, sono immediatamente disponibili sul web alla pagina http://cnt.rm.ingv.it/ e nell’Italian Seismological Instrumental and parametric Data-base (ISIDe; Mele et al. 2007) http://iside.rm.ingv.it/iside/standard/index.jsp. Questi eventi sono in seguito revisionati dagli analisti del Bollettino. Gli analisti ricontrollano i parametri di tutti i terremoti ottenuti inserendo pesi e polarità degli arrivi delle onde sismiche, integrando i dati letti in sala con tutti i dati disponibili nel sistema di localizzazione. Il Bollettino viene da decenni prodotto dall’INGV. Dal 1985 i dati del bollettino sono disponibili nel data-base ISIDe. Per il periodo che va dal Gennaio 2002 al 16 Aprile 2005 tali dati, in formato GSE (Group of Scientific Experts format), sono reperibili anche nella pagina http://bollettinosismico.rm.ingv.it/; mentre per il periodo che va dall'Aprile 2012 ad oggi il bollettino è reperibile in formato QuakeML in http://iside.rm.ingv.it/iside/standard/index.jsp?page=bulletin. L’altro catalogo di riferimento nazionale della sismicità strumentale è il Catalogo della sismicità italiana (CSI 1.1; http://csi.rm.ingv.it/, Castello et al 2007) che contiene la sismicità dal 1981 al 2002. Il CSI deriva dal bollettino sismico nazionale, ma contiene anche le fasi delle reti regionali disponibili per quegli anni; per tale intervallo temporale rappresenta quindi il catalogo più revisionato, completo ed omogeneo soprattutto in termini di magnitudo.Il numero di terremoti localizzati negli ultimi anni nel bollettino sismico nazionale è aumentato fino a raggiungere alcune decine di migliaia l’anno, nel 2014 ci sono 27435 eventi (tabella 1). La rete sismica nazionale è oggi integrata in tempo reale con le reti regionali del Nord Ovest (Università di Genova), del Nord Est (OGS), della Calabria (Università della Calabria), con la rete realizzata per il near Fault Observatory dell’Alta Valle del Tevere, con altre reti regionali ed infine con una serie di stazioni temporanee che sono installate in caso di emergenza dal gruppo di lavoro della rete sismica mobile dell’INGV. Queste integrazioni hanno abbassato la soglia di detezione su tutto il territorio italiano rendendo possibile la localizzazione di eventi di M〈1.5. L’abbassamento della soglia di detezione e localizzazione sul territorio nazionale non è tuttavia omogeneo; da varie analisi fatte sui dati della rete e sulla sua geometria si è stimato che la soglia di magnitudo per la quale è possibile localizzare un evento in qualsiasi parte del territorio italiano (fatta esclusione per la Sardegna e per alcuni casi particolari) è circa M=1.7 (Amato and Mele 2008). Dai dati riportati nella tabella 1, relativa al numero di eventi registrati ogni anno per diverse classi di magnitudo, è facile vedere che le sequenze sismiche dell’Aquila nel 2009 e dell’Emilia nel 2012 hanno influito fortemente sul numero di terremoti con M〉=3.5, raddoppiandoli rispetto agli altri anni, ma che il numero di eventi con M〈1.5 localizzati è in costante aumento, a prescindere dall’occorrenza di eventi particolarmente forti, essendo legato, come spiegato prima, al miglioramento della rete di monitoraggio. Questo ha comportato, negli ultimi anni, un aumento esponenziale del carico di lavoro per gli analisti del Bollettino, al punto tale che a ottobre 2014 si è deciso di limitare la revisione del Bollettino solo agli eventi con M〉=1.5. Con questa nuova filosofia sono stati revisionati gli ultimi mesi del 2014, anno per il quale il bollettino è già disponibile su ISIDe, e si stanno analizzando gli eventi del 2015. Per gli eventi più piccoli rimarrà disponibile in ISIDe la localizzazione di sala, che per eventi di quel range di magnitudo in generale fornisce letture dei tempi di arrivo su quasi tutte le stazioni che hanno effettivamente registrato l’evento. Diminuire il numero di eventi da revisionare consente di effettuare il bollettino in tempi relativamente rapidi: a fine anno 2015 uscirà il bollettino 2015 diviso in quadrimestri; la pubblicazione del primo quadrimestre del 2016 è prevista per maggio 2016. Da gennaio 2015 gli analisti del bollettino rielaborano gli eventi con M〉=3.5 il giorno dopo l’accadimento, o il seguente giorno lavorativo, per fornire un dato migliore in tempi brevi. Questo riallineamento del Bollettino sismico nazionale consentirà delle analisi più accurate della sismicità in atto in quanto basate su eventi controllati. Il Bollettino avrà, quindi, uscite quadrimestrali che saranno descritte in un breve documento tecnico al quale sarà attribuito un PID per valorizzare il lavoro degli analisti e di tutto il personale che lavora al Bollettino. Il documento conterrà una mappa della sismicità del quadrimestre, una breve descrizione delle modalità utilizzate nel produrre il Bollettino, ed elencherà il personale coinvolto nell’analisi dei dati. Sarà riportata inoltre qualche analisi statistica dei dati sismici ed i relativi istogrammi: quanti eventi sono stati registrati nel quadrimestre e di quale magnitudo e quante stazioni hanno contribuito alle localizzazioni. Inoltre sarà presentata una mappa della rete sismica con il numero di fasi P ed S registrate ad ogni stazione in rapporto al numero di eventi che avrebbe dovuto registrare, per valutare così l’efficienza delle stazioni della Rete Sismica Nazionale. Per gli eventi più forti saranno mostrati i Time Domain Moment Tensor (TDMT), i meccanismi focali fatti con le polarità dei primi arrivi, alcune forme d’onda significative e le shakemaps degli eventi di magnitudo superiore a 4. Saranno inoltre continuate le pubblicazioni annuali sui Quaderni di Geofisica (Mele et al 2010; Arcoraci et al 2012; Battelli et al 2013). Il bollettino, come già detto nell’introduzione, è attualmente disponibile in formato QuakeML, che contiene le localizzazioni con la stima degli errori, le magnitudo (Mw, ML, Md), le letture delle fasi P ed S ed i time domain moment tensor (TDMT) quando calcolabili. Sono stati, inoltre sviluppati alcuni webservices (http://webservices.rm.ingv.it/ws_fdsn.php) che aiutano a leggere i QuakeML e rendono il bollettino fruibile alla comunità scientifica nazionale ed internazionale: I dati del bollettino italiano confluiscono all’ International Seismological Centre (ISC), dove sono integrati all’interno del bollettino europeo.
    Description: Published
    Description: Trieste
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: open
    Keywords: Bollettino sismico ; Italia ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: In this paper we present and discuss the performance of the procedure for earthquake location and characterization implemented in the Italian Candidate Tsunami Service Provider at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome. Following the ICG/NEAMTWS guidelines, the first tsunami warning messages are based only on seismic information, i.e., epicenter location, hypocenter depth, and magnitude, which are automatically computed by the software Early-est. Early-est is a package for rapid location and seismic/tsunamigenic characterization of earthquakes. The Early-est software package operates using offline-event or continuous-real-time seismic waveform data to perform trace processing and picking, and, at a regular report interval, phase association, event detection, hypocenter location, and event characterization. Early-est also provides mb, Mwp, and Mwpd magnitude estimations. mb magnitudes are preferred for events with Mwp ≲ 5.8, while Mwpd estimations are valid for events with Mwp ≳ 7.2. In this paper we present the earthquake parameters computed by Early-est between the beginning of March 2012 and the end of December 2014 on a global scale for events with magnitude M ≥ 5.5, and we also present the detection timeline. We compare the earthquake parameters automatically computed by Early-est with the same parameters listed in reference catalogs. Such reference catalogs are manually revised/verified by scientists. The goal of this work is to test the accuracy and reliability of the fully automatic locations provided by Early-est. In our analysis, the epicenter location, hypocenter depth and magnitude parameters do not differ significantly from the values in the reference catalogs. Both mb and Mwp magnitudes show differences to the reference catalogs. We thus derived correction functions in order to minimize the differences and correct biases between our values and the ones from the reference catalogs. Correction of the Mwp distance dependency is particularly relevant, since this magnitude refers to the larger and probably tsunamigenic earthquakes. Mwp values at stations with epicentral distance Δ ≲ 30° are significantly overestimated with respect to the CMT-global solutions, whereas Mwp values at stations with epicentral distance Δ ≳ 90° are slightly underestimated. After applying such distance correction the Mwp provided by Early-est differs from CMT-global catalog values of about δ Mwp ≈ 0.0 ∓ 0.2. Early-est continuously acquires time-series data and updates the earthquake source parameters. Our analysis shows that the epicenter coordinates and the magnitude values converge within less than 10 min (5 min in the Mediterranean region) toward the stable values. Our analysis shows that we can compute Mwp magnitudes that do not display short epicentral distance dependency overestimation, and we can provide robust and reliable earthquake source parameters to compile tsunami warning messages within less than 15 min after the event origin time.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...