GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (3)
Document type
Keywords
Language
Years
Year
  • 1
    Publication Date: 2022-10-12
    Description: The Middle Miocene (15.99 to 11.65 Ma) of Europe witnessed major climatic, environmental, and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature and precipitation patterns over Europe. Here, we use a high-resolution (∼0.75°) isotope-enabled general circulation model (ECHAM5-wiso) with time-specific boundary conditions to investigate changes in temperature, precipitation, and δ18O in precipitation (δ18Op). Experiments were designed with variable elevation configurations of the European Alps and different atmospheric CO2 levels to examine the influence of Alpine elevation and global climate forcing on regional climate and δ18Op patterns. Modeling results are in agreement with available paleobotanical temperature data and with low-resolution Middle Miocene experiments of the MioMIP1 project. However, simulated precipitation rates are 300 - 500 mm/year lower in the Middle Miocene than for pre-industrial times for central Europe. This result is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts in large-scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction and humidity. We suggest that global climate forcing contributed to a maximum δ18Op change of ∼2‰ over high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled δ18Op decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation-δ18Op lapse rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using present-day δ18Op - elevation relationships data for stable isotope paleoaltimetry studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-05
    Description: Rapid, localized exhumation has been reported at many plate corners between adjacent subduction/collision segments. Here we use a fully‐coupled geodynamic and geomorphological modelling approach to investigate overriding plate deformation and resulting rock uplift patterns in these narrow, cuspate regions. In this study, we focus on the effects of internal deformation within a subducting convex‐upward‐shaped indenter and the strength of the interface between the upper and downgoing plate. The strongest localization of high rock uplift rates in the region above the indenter apex is predicted in experiments with a deformable lower plate, a weak interface layer and lateral shortening accommodated only by subduction (i.e., without an upper plate advance component). Our results suggest that bull’s eye shaped structures characterized by young thermochronological ages can, in principle, be reproduced numerically when taking into account a non‐rigid subducting plate together with complex brittle‐ductile rheology and stratification of the overriding lithosphere and realistically implemented fluvial erosion at its surface.
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: European Research Council http://dx.doi.org/10.13039/100010663
    Keywords: ddc:551.1
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-02
    Description: The Ekström Ice Shelf is one of numerous small ice shelves that fringe the coastline of western Dronning Maud Land, East Antarctica. Reconstructions of past ice-sheet extent in this area are poorly constrained, due to a lack of geomorphological evidence. Here, we present a compilation of geophysical surveys in front of and beneath the Ekström Ice Shelf, to identify and interpret evidence of past ice-sheet flow, extent and retreat. The sea floor beneath the Ekström Ice Shelf is dominated by an incised trough, which extends from the modern-day grounding line onto the continental shelf. Our surveys show that mega-scale glacial lineations cover most of the mouth of this trough, terminating 11 km away from the continental shelf break, indicating the most recent minimal extent of grounded ice in this region. Beneath the front ∼30 km of the ice shelf measured from the ice shelf edge towards the inland direction, the sea floor is characterised by an acoustically transparent sedimentary unit, up to 45 m thick. This is likely composed of subglacial till, further corroborating the presence of past grounded ice cover. Further inland, the sea floor becomes rougher, interpreted as a transition from subglacial tills to a crystalline bedrock, corresponding to the outcrop of the volcanic Explora Wedge at the sea floor. Ice retreat in this region appears to have happened rapidly in the centre of the incised trough, evidenced by a lack of overprinting of the lineations at the trough mouth. At the margins of the trough uniformly spaced recessional moraines suggest ice retreated more gradually. We estimate the palaeo-ice thickness at the calving front around the Last Glacial Maximum to have been at least 305 to 320 m, based on the depth of iceberg ploughmarks within the trough and sea level reconstructions. Given the similarity of the numerous small ice shelves along the Dronning Maud Land coast, these findings are likely representative for other ice shelves in this region and provide essential boundary conditions for palaeo ice-sheet models in this severely understudied region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...