GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-11-26
    Description: The analogue experiments that produce seismo-acoustic events are relevant for understanding the degassing processes of a volcanic system. The aimof thiswork is to design an unsupervised neural network for clustering experimental seismo-acoustic events in order to investigate the possible cause-effect relationships between the obtained signals and the processes. We focused on two tasks: 1) identify an appropriate strategy for parameterizing experimental seismo-acoustic events recorded during analogue experiments devoted to the study of degassing behavior at basaltic volcanoes; 2) define the set up of the selected neural network, the Self-Organizing Map (SOM), suitable for clustering the features extracted from the experimental events. The seismo-acoustic events were generated using an ad hoc experimental setup under different physical conditions of the analogue magma (variable viscosity), injected gas flux (variable flux velocity) and conduit surface (variable surface roughness). We tested the SOMs ability to group the experimental seismo-acoustic events generated under controlled conditions and conduit geometry of the analogue volcanic system. We used 616 seismo-acoustic events characterized by different analogue magma viscosity (10, 100, 1000 Pa s), gas flux (5, 10, 30, 60, 90, 120, 150, 180 × 10−3 l/s) and conduit roughness (i.e. different fractal dimension corresponding to 2, 2.18, 2.99). We parameterized the seismoacoustic events in the frequency domain by applying the Linear Predictive Coding to both accelerometric and acoustic signals generated by the dynamics of various degassing regimes, and in the time domain, applying a waveform function. Then we applied the SOM algorithm to cluster the feature vectors extracted fromthe seismo-acoustic data through the parameterization phase, and identified four main clusters. The results were consistent with the experimental findings on the role of viscosity, flux velocity and conduit roughness on the degassing regime. The neural network is capable to separate events generated under different experimental conditions. This suggests that the SOM is appropriate for clustering natural events such as the seismo-acoustic transients accompanying Strombolian explosions and that the adopted parameterization strategy may be suitable to extract the significant features of the seismoacoustic (and/or infrasound) signals linked to the physical conditions of the volcanic system.
    Description: Published
    Description: 581742
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: self-organizing map ; neural network ; seismo-acoustic signals ; experimental volcanology ; clustering method
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-16
    Description: Batu Tara is an active but poorly studied volcano located in the Lesser Sunda Archipelago (Indonesia). Its last known long-lasting eruptive phase, dating 2006–2015, was characterised by frequent short-lived explosions, similar in style and magnitude to those of the well monitored Stromboli volcano (Italy). On September 2014, we collected high-frequency multi-parametric measurements of the ongoing explosive activity to investigate the dynamics of intermediate-size volcanic explosions. We acquired synchronized acoustic, thermal and visible high-speed imaging data, and parameterized different spatial and temporal properties of each explosive event: i) maximum height and ejection velocity of bombs and plumes, ii) duration, iii) amplitude of acoustic and thermal transients, iv) acoustic and thermal energy, v) spectral features of the acoustic signals. The latter ones justify the assumption of a pipe resonance of the uppermost conduit section, likely in response to the arrival of over-pressurized gas at the free magma surface. The variability of the investigated parameters agrees with previous observations of intermediate-size explosions at other volcanoes, reflecting the complexity of the related source processes.
    Description: Published
    Description: 107199
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-01
    Description: The gradual temporal shift of the spectral lines of harmonic seismic and/or acoustic tremor, known as spectral gliding, has been largely documented at different volcanoes worldwide. Despite the clear advantage of the experimental approach in providing direct observation of degassing processes and related elastic radiation, experimental studies on gliding tremor are lacking. Therefore, we investigated different episodes of gliding of acoustic and seismic tremor observed during analogue degassing experiments performed under different conditions of magma viscosity (10-1,000 Pa s), gas flux (5-180×10−3 l/s) and conduit surface roughness (fractal dimension of 2-2.99). Gliding experimental harmonic seismic and acoustic tremor was observed at high gas flux rates and viscosities, mostly associated with an increasing trend and often preceding a major burst. Decreasing secondary sets of harmonic spectral lines were observed in a few cases. Results suggest that gliding episodes are mostly related to the progressive volume variation of shallow interconnected gas pockets. Spectral analyses performed on acoustic signals provided the theoretical length of the resonator that was compared against the temporal evolution of the gas pockets, quantified from video analyses. The similarities between the observed degassing regime and churn-annular flow in high viscous fluids encourage further studies on churn dynamics in volcanic environments.
    Description: Published
    Description: 117344
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: seismo-acoustic tremor; experimental volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-14
    Description: Two paroxysmal explosions occurred at Stromboli on July 3 and August 28, 2019, the first of which caused the death of a young tourist. After the first paroxysm an effusive activity began from the summit vents and affected the NW flank of the island for the entire period between the two paroxysms. We carried out an unsupervised analysis of seismic and infrasonic data of Strombolian explosions over 10 months (15 November 2018–15 September 2019) using a Self- Organizing Map (SOM) neural network to recognize changes in the eruptive patterns of Stromboli that preceded the paroxysms. We used a dataset of 14,289 events. The SOM analysis identified three main clusters that showed different occurrences with time indicating a clear change in Stromboli’s eruptive style before the paroxysm of 3 July 2019. We compared the main clusters with the recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, and found that the clusters are associated with different types of Strombolian explosions and different deformation patterns of the summit area. Our findings provide new insights into Strombolian eruptive mechanisms and new perspectives to improve the monitoring of Stromboli and other open conduit volcanoes.
    Description: This work was supported by the project Progetto Strategico Dipartimentale INGV 2019 “Forecasting eruptive activity at Stromboli volcano: timing, eruptive style, size, intensity and duration” (FIRST). This work is also supported by a Marie Sklodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under Contract Number 765710 INSIGHTS. This work benefited from the EU (DG ECHO) Project EVE n. 826292. This work has been partially supported by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection; Scientific Responsibility: N.C.). However, this publication does not necessarily represent the official opinion and policies of the department.
    Description: Published
    Description: 1287
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: eruption precursors ; Stromboli volcano ; neural networks ; self-organizing map ; seismo-acoustic signals ; volcano monitoring ; ground-based visible and thermal imagery ; ground deformation ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-09
    Description: Volcano infrasound is an important component of multi-disciplinary volcano geophysics and has proven utility for tracking eruptive activity and quantifying eruption dynamics. Unfortunately, a major limitation in our interpretation of volcano infrasound is that it is critically affected by the morphology of the volcanic crater, which can transform potentially simple source-time functions occurring within the crater into a signal that is substantially more complex. If infrasound waveforms are to be used to recover important physical parameters about an eruption source, then a robust understanding of the acoustic response of the crater is required. In many cases, and especially for large deep craters, the acoustic response function acts as a severe filter. For example, at Cotopaxi Volcano (Ecuador) infrasound ‘tornillos’ with an impulsive onset and peaked spectra at 0.2 Hz decaying for more than 90 s are part of the source response due to the crater’s steep-walled, deep crater. We analyze broadband infrasound data from open-vent volcanoes with a wide variety of crater geometries and jointly calculate their crater acoustic response using 1-D (axisymmetric) and 3-D morphologies derived from structure-from-motion digital terrain models. We analyze both explosion and lava lake infrasound from Villarrica (Chile), Stromboli (Italy), and Nyiragongo (Democratic Republic of the Congo) to demonstrate a broad spectrum of volcano infrasound, whose attributes are heavily influenced by crater shape. We demonstrate how some differences between simulations and recorded explosion are influenced by sourcetime functions, which may range from brief and impulsive to complicated or extended in time. Numerical modeling shows that each volcanic crater has a unique impulse response and that deconvolving this acoustic response is vital for estimating important eruption parameters including the size of volcanic explosions.
    Description: Published
    Description: Napoli (Italia)
    Description: 5V. Processi eruttivi e post-eruttivi
    Keywords: infrasound ; crater geometry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-16
    Description: To explore the effect of conduit roughness on volcanic jet dynamics and on the related seismo-acoustic radiation we performed a series of shock-tube experiments using pipes with variable inner surface fractal dimension D. Variable starting pressure produced subsonic to supersonic jets visualized using high-speed shadowgraph and recorded with an array of accelerometers and microphones. At all starting pressures, increasing D increases the energy transfer from the gas to the conduit walls, decreasing the jet exit velocity (Mach number) and, for supersonic cases, the related shock-cell spacing, and increasing the seismic to acoustic radiation amplitude ratio. The roughness-induced changes in jet velocity and turbulence affect the dominant sources of the jet noise and modulates the spectral properties of the acoustic signals. From our study we show that conduit wall roughness is an important and yet largely neglected factor in the dynamics of explosive volcanic eruptions and their monitored geophysical signals.
    Description: Published
    Description: e2023GL104717
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...