GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (6)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2021-01-04
    Description: The Paleo Elbe Valley is the most prominent subsurface structure in the southern North Sea. During the Weichselian (marine isotope stage (MIS) 2), the valley traversed the exposed sea floor and drained the southern margin of the Scandinavian ice sheet. Today the valley is filled with up to 16 m thick sediments, but the responsible processes and drivers remain unknown. To unravel these processes and describe the valley’s evolution with Holocene transgression, we use shallow seismic data and vertical high-resolution grain-size core data. At the base of the western shore, supralittoral fine sands are overlain by a thin layer of clay dated to 9.8 cal. ka BP. The major sediment package consists of marine silt with internal seismic reflectors inclined in a northeastern direction, indicating a sediment transport from the southwest. The valley infill started when the western shore was flooded around 9.6 cal. ka BP and can be divided into two phases. During the first one (9.6–8.1 cal. ka BP) the sedimentation rate was highly driven by wind and waves. The second phase (8.1–5.0 cal. ka BP) was mainly tidal dominated but shows also storm event deposits in the north. Around 5.0 cal. ka BP the valley was almost filled.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-13
    Description: Subtidal hard substrate habitats are unique habitats in the marine environment. They provide crucial ecosystem services that are socially relevant, such as water clearance or as nursery space for fishes. With increasing marine usage and changing environmental conditions, pressure on reefs is increasing. All relevant directives and conventions around Europe include sublittoral hard substrate habitats in any manner. However, detailed specifications and specific advices about acquisition or delineation of these habitats are internationally rare although the demand for single object detection for e.g., ensuring safe navigation or to understand ecosystem functioning is increasing. To figure out the needs for area wide hard substrate mapping supported by automatic detection routines this paper reviews existing delineation rules and definitions relevant for hard substrate mapping. We focus on progress reached in German approval process resulting in first hydroacoustic mapping advices. In detail, we summarize present knowledge of hard substrate occurrence in the German North Sea and Baltic Sea, describes the development of hard substrate investigations and state of the art mapping techniques as well as automated analysis routines.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU General Assembly 2021, Online, 2021-04-19-2021-04-30Seafloor sediment classification of the Sylt Outer Reef, German Bight from 2016 -2018 using ensemble modelling , EGU
    Publication Date: 2021-08-24
    Description: Recent studies on seafloor mapping have presented different modelling methods to map and classify marine sediment distribution. However, are these methods classify different sediment classes the same way? And how do we choose the right model for a certain set of sediment classes? In this study, we aim to address these issues by using ensemble modelling to map the distribution of different sediment class on a dynamic, shallow continental shelf. Our data were derived from side-scan mosaics and multibeam data repeatedly collected from 2016 to 2018 in the Sylt Outer Reef (German Bight). We used a probabilistic approach for each class separately and then compared the predicted probability for each class, to see which class is more likely to be assigned to the location. Each sediment class was predicted using a combination of different classification modelling techniques, and then the result of these models was ensembled to produced one final prediction. This approach avoids selecting one single method, limits model selection bias and can provide information on the trends and variation across models. Furthermore, we also looked on the temporal changes in sediment distributions by comparing the sediment class predictions from 2016 to 2018. Our analysis suggest that combining different modelling techniques (i.e. random forest, boosting regression trees etc.) provide higher predictive accuracy than using one single modelling method. The resulting sediment distribution maps are more objective and are produced faster than manual delineated maps often considered by stakeholders. We also identify some limitations in having small sample size and we proposed that by combining certain models and choosing the proper amount of pseudo-absence or background data can address this issue.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-24
    Description: Detecting changes of sediment boundaries on the seafloor is important for a better understanding of sediment dynamics and related impacts to benthic habitats. Side-scan sonars (SSS) perform more cost-effectively in shallow waters than other acoustic systems because of their larger swath widths, and the resolution of its images does not change with varying water depth. However, as they are generally towed behind the survey vessel, they tend to have lower positioning accuracy, which makes them unreliable for change detection analyses. In this study, we present a workflow that processes SSS data in a way that makes them fit for change detection analyses. To test the capacity of SSS mosaics for change detection, we used a free software called “Digital Shoreline Analysis System”, which was developed by the United States Geological Survey for ArcGIS version 10.4 onwards. The methods were applied in three areas in the Sylt Outer Reef, German Bight, North Sea. Our results showed that with appropriate processing, SSS mosaics could be used for change detection of sharp sediment boundaries. We found a common trend in the sediment distribution patterns of coarse sediments by monitoring the movement of their boundaries. The boundaries moved in northeast-southwest direction and boundary movements of less than 20 m were typically observed. The methods presented here are semi-automated, repeatable, and replicable, which has potential for wide-scale monitoring of sediment distribution patterns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-24
    Description: Recent studies on seafloor mapping have presented different modelling methods for the automatic classification of seafloor sediments. However, most of these studies have applied these models to seafloor data with appropriate numbers of ground-truth samples and without consideration of the imbalances in the ground-truth datasets. In this study, we aim to address these issues by conducting class-specific predictions using ensemble modelling to map seafloor sediment distributions with minimal ground-truth data combined with hydroacoustic datasets. The resulting class-specific maps were then assembled into a sediment classification map, in which the most probable class was assigned to the appropriate location. Our approach was able to predict sediment classes without bias to the class with more ground-truth data and produced reliable seafloor sediment distributions maps that can be used for seafloor monitoring. The methods presented can also be used for other underwater exploration studies with minimal ground-truth data. Sediment shifts of a heterogenous seafloor in the Sylt Outer Reef, German North Sea were also assessed to understand the sediment dynamics in the marine conservation area during two different short timescales: 2016–2018 (17 months) and 2018–2019 (4 months). The analyses of the sediment shifts showed that the western area of the Sylt Outer Reef experienced sediment fluctuations but the morphology of the bedform features was relatively stable. The results provided information on the seafloor dynamics, which can assist in the management of the marine conservation area.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...