GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2020-08-05
    Description: Temperature is recongnised as the main factor controlling the species fitness and performance. Naturally, the thermal preferences (TP) of aquatic organisms obtained in controlled conditions have been used to relate physiological performance with field data since they are a good proxy to the fundamental niche. Literature suggests that dispersal capabilities, biological interactions, acclimatisation, adaptation, among others might play a role in species distribution; thus, in reality, species are usually occupying a realized thermal niche (RTN). Therefore, this study was designed to inquire into the following questions: Are the TP of tropical aquatic ectotherms found in laboratory conditions similar to their RTN? Can TP be validated with occurrences in the wild? To answer these questions, this study compared the TP obtained from previously published works with the RTN of the crabs Callinectes similis and C. sapidus, the fishes Centropomus undecimalis and Ocyurus chrysurus, the lobster Panulirus argus, and the octopus Octopus maya obtained from occurrences from 1693documents. When RTN values were tested against the TPs obtained in laboratory, no significant differences were found for fish species (P 〉 0.05); in contrast, differences for the benthic invertebrates were reported (P 〈 0.05). At least two factors could have been affecting these results: differences in the average tolerances between geographically distinct populations (local adaptation) and the dispersal capabilities that might have been forcing a differentiation between populations If, as proposed, fishes can actively follow thermal optimum, their response to warming scenarios could be faster than benthic organisms. If our hypothesis is true, the uncertainty of climate change could be reduced when the local adaptation is taking into consideration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-01
    Description: The abundance of the alien, Indo-Pacific damselfish Neopomacentrus cyanomos on an oil-loading platform in the southwest Gulf of Mexico indicates that widely distributed platforms could facilitate the expansion of its geo- graphic range across the western and northern fringes of the Gulf. From there it likely will spread to other areas of the Greater Caribbean. The lionfish example demonstrates that it eventually happens, and can do so rapidly. Reduced temperature effects on the physiology of this species were examined to better predict its survivability in the northern Gulf during winter, when sea surface temperatures fall as low as 15 °C along the coast. Overall, our results show that when the degree of experimental temperature decline was large and rapid, no compensation occurred and the stress response observed mostly reflected cellular processes that minimized damage. Integrated biomarker response values were significantly different between fish rapidly exposed to colder vs. warmer temperatures (declines of −4 °C each day, from 26 to 14 °C), reflected in higher values of blood metabolites and routine metabolic rates observed in fish exposed to 14 and 18 °C respectively, and lower activity of all enzymes, lower protein carbonylation, and higher oxidative damage to lipids in fish exposed to 14 °C. While the phy- siological proxies responded to minimize damage during the rapid-decrease experiment, the same proxies re- flected the consequences of compensation when fish were thermally challenged after a 45 days acclimation at 18 °C. In this case, lower values of blood metabolites and high antioxidant levels and indicators of damages underpinned its pejus lower range. Based on the results of the present work, it seems clear that low winter SSTs in the northern Gulf will slow down the colonization of the inshore area of N. cyanomos. We suggest that the use of physiological cellular stress markers on specimens acquired at the beginning of an invasion should be im- plemented in new standardized experimental protocols, including both rapid increases/decreases of temperature and post-acclimation temperature challenges, to assess the invasiveness potential of aquatic species such as this.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...