GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD  (1)
  • ELSEVIER GMBH  (1)
  • 2020-2022  (2)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    In:  EPIC3Journal of Environmental Management, ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 255, pp. 109876, ISSN: 0301-4797
    Publication Date: 2019-11-28
    Description: Understanding the distribution and structure of biotopes is essential for marine conservation according to international legislation, such as the European Marine Strategy Framework Directive (MSFD). The biotope ‘Sea Pen and Burrowing Megafuna Communities’ is included in the OSPAR list of threatened and/or declining habitats. Accordingly, the MSFD prescribes a monitoring of this biotope by the member states of the EU. In the German North Sea, however, the distribution and spatial extent of this biotope as well as the structuring of its benthic species inventory is unknown. We used an extensive geo-referenced dataset on occurrence, abundance and biomass of the benthic infauna of the south-eastern North Sea to estimate the distribution of the biotope and to characterize the associated infauna assemblages. Sediment preferences of the burrowing megafauna, comprising decapod crustaceans and echiurids, were identified and the core distribution areas of the burrowing megafauna were modelled using Random Forests. Clusters of benthic infauna inside the core distribution areas were identified by fuzzy clustering. The burrowing megafauna occurred on a wide range of sediments with varying mud contents. The core distribution area of the burrowing megafauna was characterized by elevated mud content and a water depth of 25–55 m. The analysis of the benthic communities and their relation to sedimentological conditions identified four infauna clusters of slightly varying species composition. The biotope type ‘Sea Pen and Burrowing Megafuna Communities’ is primarily located inside the paleo valley of the river Elbe and covers an area of 4980 km2. Dedicated monitoring will have to take into account the spatial extent and the structural variability of the biotope. Our results can provide a baseline for the evaluation of the future development of the environmental status of the biotope. The maps generated herein will facilitate the communication of information relevant for environmental management to authorities and policy makers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER GMBH
    In:  EPIC3Zoology, ELSEVIER GMBH, 143, ISSN: 0944-2006
    Publication Date: 2020-11-19
    Description: Microplastic pollution is an emerging threat to marine biota. Uptake of microplastics can impair nutrition and affect the performance of organisms. However, the vulnerability to microplastics seems to vary between species for yet widely unexplored reasons. We investigated the stomach content of the brown shrimp, Crangon crangon, from the southern North Sea and performed feeding experiments and anatomical studies of the digestive organs to comprehend the distribution of fluorescent microparticles within the shrimp. Shrimp collected in their natural environment contained between 51 and more than 3,000 sand grains and fragments of bivalve shells in their stomachs. Sand grains may have been ingested to exploit the associated biofilm or to support maceration of food. Bivalve shell fragments were particularly abundant in summer when shrimp fed on freshly settled mussels. Shrimps’ stomach can be cleaned from ingested particles by regurgitation. In an experimental approach, we administered fluorescent microbeads of 0.1, 2.1, and 9.9 μm diameter. Only the smallest particles (0.1 μm) entered the midgut gland, which is the principal site of nutrient resorption in crustaceans. A fine-meshed chitinous filter system in the stomach of the shrimp prevents the passage of particles larger than about 1 μm. C. crangon appears well adapted to handle natural microscopic particles. This trait might also be advantageous in coping with microplastic pollution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...