GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (3)
  • 1985-1989  (5)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 32 (1986), S. 237-242 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The inconsistency of vacuum insertion with the symmetry properties ofW-exchange amplitudes and the fact that not all vacuum-saturation terms are genuine contributions from the vacuum intermediate state all reflect the necessity of modifying the traditional vacuum-insertion method. As suggested by the 1/N expansion (N: number of colors), final-state interactions and the nonperturbative effects due to softgluon exchange are indispensible for a satisfactory explanation of nonleptonic decays of mesons. From the data we determine the parameter ε, which measures the contribution from color octet currents relative to that from the corresponding color singlet currents, to be −0.47, −1.0, −1.1 respectively forD→PP,VP (P: pseudoscalar meson,V: vector meson) andK→2π decays. Presumably this can be tested by the lattice Monte Carlo calculations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 29 (1985), S. 127-130 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The interference andW-exchange contributions toΛ c + inclusive nonleptonic decay rate are expressed in terms of matrix elements of effective fourquark operators and evaluated in the MIT bag model. It is found that although theW-exchange is not necessarily subject to helicity and color suppression, it does not suffice to explain the measured lifetime ofΛ c +. The observed semileptonic branching ratio ofΛ c +, however, requires that its inclusive decay rate be dominated by the nonspectator contribution and thus theW-exchange be substantially enhanced by some nonperturbative effects. The implication for exclusive two-body decays ofΛ c + is briefly discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 43 (1989), S. 391-400 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using the recently proposed higher-order chiral Lagrangians determined from the integration of nontopological chiral anomalies, we calculate corrections to the current-algebra analysis ofK→3Π decay amplitudes expanded in powers of the Dalitz variables. Effects of quartic-derivative weak chiral Lagrangians are determined through the use of short-distance effective weak Hamiltonian and the factorization method. We find that (1) the constant and linear terms in the amplitude for ΔI=1/2K→3Π are in excellent agreement with experiment; the previous discrepancy of (20–35)% between current algebra and data is thus accounted for by the higher-order effective Lagrangians, (2) the penguin interaction does not play an essential role in the ΔI=1/2 rule, for otherwise it will lead to a large disagreement for the constant and linear terms, (3) one of the two quadratic terms in the ΔI=1/2 process, which arise from the quartic chiral Lagrangians, is in accord with data within experimental errors, while the other is off by four standard deviations, (4) the linear term in the ΔI=3/2 transitions is in good agreement with experiment and contributions from quadratic terms are sizable.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 32 (1986), S. 243-248 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Direct (nonresonant) 3-body decays of charmed mesons are calculated in chiral perturbation theory. The magnitudes of the 20 and 84 representations of the effective chiralSU(4)×SU(4) Lagrangian are determined from the measured 2-bodyD→Kπ rate. For decay modes which do not contain nonspectator contributions, the agreement of theoretical predictions with the data is satisfactory. Nevertheless, the large discrepancy between theory and experiment for decays which can proceed through theW-exchange orW-annihilation might imply the importance of nonperturbative corrections to the nonspectator diagram and the existence of final-state interactions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 29 (1985), S. 453-458 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Baryon-baryon matrix elements of the parity-violating charm-changing weak Hamiltonian are calculated using the MIT bag model. The changes in thes- andp-wave amplitudes of Cabibbo-favored nonleptonic decays of charmed baryons due to these parity-violating baryon transition elements are in general not substantially significant. However, they can overwhelm or be comparable to the contributions arising from the parity-conserving matrix elements for some reactions such as thes-wave amplitude ofΛ c + →Ξ 0 K + and Δ++ K − and thep-wave amplitude ofΛ c + →∑ 0π+.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-09-24
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Buentgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Koehler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., & Talamo, S. The Intcal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62(4), (2020): 725-757, doi:10.1017/RDC.2020.41.
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Description: We would like to thank the National Natural Science Foundation of China grants NSFC 41888101 and NSFC 41731174, the 111 program of China (D19002), U.S. NSF Grant 1702816, and the Malcolm H. Wiener Foundation for support for research that contributed to the IntCal20 curve. The work on the Swiss and German YD trees was funded by the German Science foundation and the Swiss National Foundation (grant number: 200021L_157187). The operation in Aix-en-Provence is funded by the EQUIPEX ASTER-CEREGE, the Collège de France and the ANR project CARBOTRYDH (to EB). The work on the correlation of tree ring 14C with ice core 10Be was partially supported by the Swedish Research Council and the Knut and Alice Wallenberg foundation. M. Butzin was supported by the German Federal Ministry of Education and Research (BMBF) as Research for Sustainable Development (FONA; http://www.fona.de) through the PalMod project (grant number: 01LP1505B). S. Talamo and M. Friedrich are funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No. 803147-RESOLUTION, awarded to ST). CA. Turney would like to acknowledge support of the Australian Research Council (FL100100195 and DP170104665). P. Reimer and W. Austin acknowledge the support of the UKRI Natural Environment Research Council (Grant NE/M004619/1). T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9. Other datasets and the IntCal20 database were created without external support through internal funding by the respective laboratories. We also would like to thank various institutions that provided funding or facilities for meetings.
    Keywords: calibration curve ; radiocarbon ; IntCal20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-08
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...