GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (128 Seiten = 6 MB) , Graphen, Karte, Illustration
    Edition: 2020
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 18 (1999), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: We investigate the response of the Nordic seas-Arctic Ocean system to surface freshwater flux anomalies that we regard as typical for long-term atmospheric variability. We employ response experiments with a coupled sea ice-ocean model where we introduce a surface freshwater flux anomaly (A) over the Norwegian Sea and (B) in the Laptev Sea. Case A offers an explanation for the intermediate depth salinity changes observed in the Amundsen Basin. The signal observed there belongs to an original perturbation that, according to the model, occurred around a decade earlier. Salinity fluctuations in the Laptev Sea could play a role in changes in the near surface salinity in the Amundsen Basin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation – atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The dependence of results from coarse-resolution models of the North Atlantic circulation on the numerical advection algorithm is studied. In particular, the sensitivity of parameters relevant for climate simulations as e.g., meridional transport of mass and heat and main thermocline thickness is investigated. Three algorithms were considered: (a) a central difference scheme with constant values for horizontal and vertical diffusion, (b) an upstream scheme with no explicit diffusion, and (c) a flux-corrected transport (FCT) scheme with constant and strictly isopycnal diffusion. The temporal evolution of the three models on time scales of centuries is markedly different, the upstream scheme resulting in much shorter adjustment time whereas the central difference scheme is slower and controlled by vertical diffusion rather than advection. In the steady state, the main thermocline structure is much less diffusive in the FCT calculation which also has much lower heat transport. Both horizontal circulation and overturning in the meridional-vertical plane are strongest in the upstream-model. The results are discussed in terms of the effective vertical (diapycnal) mixing in the different models. A significant increase in vertical resolution would be required to eliminate the high sensitivity due to the numerical algorithms, and allow physically motivated mixing formulations to become effective.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation — atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  (Diploma thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 115 pp
    Publication Date: 2020-07-03
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-02
    Description: The dependence of results from coarse-resolution models of the North Atlantic circulation on the numerical advection algorithm is studied. In particular, the sensitivity of parameters relevant for climate simulations as e.g., meridional transport of mass and heat and main thermocline thickness is investigated. Three algorithms were considered: (a) a central difference scheme with constant values for horizontal and vertical diffusion, (b) an upstream scheme with no explicit diffusion, and (c) a flux-corrected transport (FCT) scheme with constant and strictly isopycnal diffusion. The temporal evolution of the three models on time scales of centuries is markedly different, the upstream scheme resulting in much shorter adjustment time whereas the central difference scheme is slower and controlled by vertical diffusion rather than advection. In the steady state, the main thermocline structure is much less diffusive in the FCT calculation which also has much lower heat transport. Both horizontal circulation and overturning in the meridional-vertical plane are strongest in the upstream-model. The results are discussed in terms of the effective vertical (diapycnal) mixing in the different models. A significant increase in vertical resolution would be required to eliminate the high sensitivity due to the numerical algorithms, and allow physically motivated mixing formulations to become effective.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-06-26
    Keywords: ANT-XIII/5; AWI_PhyOce; CT; DATE/TIME; DEPTH, water; LATITUDE; LONGITUDE; Physical Oceanography @ AWI; Polarstern; PS40; PS40/5-track; Salinity; Temperature, water; Thermosalinograph; TSG; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 7300 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    american geophysical union
    In:  EPIC3Journal of geophysocal research oceans, american geophysical union, 125, ISSN: 2169-9291
    Publication Date: 2020-02-14
    Description: Ocean heat transport is often thought to play a secondary role for Arctic surface warm16 ing in part because warm water which ows northward is prevented from reaching the 17 surface by a cold and stable halocline layer. However, recent observations in various re18 gions indicate that occasionally, warm water is found directly below the surface mixed 19 layer. Here we investigate Arctic Ocean surface energy uxes and the cold halocline layer 20 in climate model simulations from the Coupled Model Intercomparison Project Phase 21 5 (CMIP5). An ensemble of 15 models shows decreased sea ice formation and increased 22 ocean energy release during fall, winter, and spring for a high-emission future scenario. 23 Along the main pathways for warm water advection, this increased energy release is not 24 locally balanced by increased Arctic Ocean energy uptake in summer. Because during 25 Arctic winter, the ocean mixed layer is mainly heated from below, we analyze changes 26 of the cold halocline layer in the monthly mean CMIP5 data. Fresh water acts to sta27 bilize the upper ocean as expected based on previous studies. We �nd that in spite of 28 this stabilizing e�ect, periods in which warm water is found directly or almost directly 29 below the mixed layer and which occur mainly in winter and spring become more fre30 quent in high-emission future scenario simulations, especially along the main pathways 31 for warm water advection. This could reduce sea ice formation and surface albedo. 32 Plain Language
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Journal of Climate, 33(15), pp. 6621-6632
    Publication Date: 2020-07-08
    Description: Air-sea interactions play a critical role in the climate system. This study investigates wind-induced changes in the ocean surface temperature and sea ice cover feeding back onto the atmospheric circulation. This interaction was modeled in the Nordic seas, using a partial coupling method to constrain the ocean with prescribed wind forcing in an otherwise fully coupled Earth system model. This enabled the evaluation of not only the direct oceanic, but also the indirect atmospheric response to idealized forcing scenarios of perturbed winds over the Nordic seas. The results show that an anticyclonic wind anomaly forcing leads to significant surface cooling in the Greenland Sea mostly due to anomalous drift of sea ice. During winter, the cooling reduces the net surface heat flux to the atmosphere and increases sea level pressure. The pressure gradients result in anomalous geostrophic southerly winds, which locally are comparable both in direction and in velocity to the prescribed forcing anomalies, suggesting a positive feedback.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...