GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • COPERNICUS GESELLSCHAFT MBH  (1)
  • Earth System Knowledge Platform  (1)
  • Elsevier  (1)
  • 2020-2022  (2)
  • 2000-2004  (1)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 68 (21). pp. 4335-4354.
    Publication Date: 2017-09-08
    Description: Extensive methane hydrate layers are formed in the near-surface sediments of the Cascadia margin. An undissociated section of such a layer was recovered at the base of a gravity core (i.e. at a sediment depth of 120 cm) at the southern summit of Hydrate Ridge. As a result of salt exclusion during methane hydrate formation, the associated pore waters show a highly elevated chloride concentration of 809 mM. In comparison, the average background value is 543 mM. A simple transport-reaction model was developed to reproduce the Cl- observations and quantify processes such as hydrate formation, methane demand, and fluid flow. From this first field observation of a positive Cl- anomaly, high hydrate formation rates (0.15–1.08 mol cm-2 a-1) were calculated. Our model results also suggest that the fluid flow rate at the Cascadia accretionary margin is constrained to 45–300 cm a-1. The amount of methane needed to build up enough methane hydrate to produce the observed chloride enrichment exceeds the methane solubility in pore water. Thus, most of the gas hydrate was most likely formed from ascending methane gas bubbles rather than solely from CH4 dissolved in the pore water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-16
    Description: The thriving interest in harvesting deep-sea mineral resources, such as polymetallic nodules, calls for environmental impact studies and, ultimately, for regulations for environmental protection. Industrial-scale deep-sea mining of polymetallic nodules most likely has severe consequences for the natural environment. However, the effects of mining activities on deep-sea ecosystems, sediment geochemistry and element fluxes are still poorly understood. Predicting the environmental impact is challenging due to the scarcity of environmental baseline studies as well as the lack of mining trials with industrial mining equipment in the deep sea. Thus, currently we have to rely on small-scale disturbances simulating deep-sea mining activities as a first-order approximation to study the expected impacts on the abyssal environment. Here, we investigate surface sediments in disturbance tracks of seven small-scale benthic impact experiments, which have been performed in four European contract areas for the exploration of polymetallic nodules in the Clarion–Clipperton Zone (CCZ) in the NE Pacific. These small-scale disturbance experiments were performed 1 d to 37 years prior to our sampling program in the German, Polish, Belgian and French contract areas using different disturbance devices. We show that the depth distribution of solid-phase Mn in the upper 20 cm of the sediments in the CCZ provides a reliable tool for the determination of the disturbance depth, which has been proposed in a previous study from the SE Pacific (Paul et al., 2018). We found that the upper 5–15 cm of the sediments was removed during various small-scale disturbance experiments in the different exploration contract areas. Transient transport-reaction modeling for the Polish and German contract areas reveals that the removal of the surface sediments is associated with the loss of the reactive labile total organic carbon (TOC) fraction. As a result, oxygen consumption rates decrease significantly after the removal of the surface sediments, and, consequently, oxygen penetrates up to 10-fold deeper into the sediments, inhibiting denitrification and Mn(IV) reduction. Our model results show that the return to steady-state geochemical conditions after the disturbance is controlled by diffusion until the reactive labile TOC fraction in the surface sediments is partly re-established and the biogeochemical processes commence. While the reestablishment of bioturbation is essential, steady-state geochemical conditions are ultimately controlled by the delivery rate of organic matter to the seafloor. Hence, under current depositional conditions, new steady-state geochemical conditions in the sediments of the CCZ are reached only on a millennium scale even for these small-scale disturbances simulating deep-sea mining activities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Earth System Knowledge Platform
    In:  EPIC3Earth System Knowledge Platform
    Publication Date: 2020-05-17
    Description: Der Tiefseebergbau wird als eine neue Möglichkeit diskutiert, um wichtige Rohstoffe zu fördern. Entsprechende Technologien befinden sich in der Entwicklung. Wir sprechen mit Forschenden vom Max-Planck-Institut für Marine Mikrobiologie, vom Alfred-Wegener-Institut und vom GEOMAR, die sich mit den Auswirkungen des Abbaus von Rohstoffen in der Tiefsee auf das dortige Ökosystem befassen.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...