GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (4)
  • 2020-2022
  • 2000-2004  (4)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 . L15308.
    Publication Date: 2018-03-21
    Description: The Galápagos Islands provide a topographic barrier for the Southern Equatorial Current (SEC) and the Equatorial Undercurrent (EUC). An island wake effect can be diagnosed from the difference of an ocean general circulation model simulation which includes the Galápagos Islands and one which ignores their presence. Cold thermocline water upwells on the western side of the islands, and only during boreal winter season these cold waters can linger around the Islands at a depth of about 80 m and affect the far eastern equatorial Pacific surface waters. This effect is partly offset by the westward transport of cold surface waters by the SEC which creates a wake on the western side of the Islands. It is furthermore shown that changes in horizontal current shear, induced by the presence of the Galápagos Islands modify the generation of tropical instability waves and lead to a basin scale SST anomaly pattern.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (10). p. 1466.
    Publication Date: 2018-02-19
    Description: For certain, but realizable, states of the thermohaline and wind driven circulation of the North Atlantic Ocean, we demonstrate the possibility of making statements regarding the likely range of values to be taken by the annual average of the NAO-index on time scales out to a decade. Given that the North Atlantic is currently in such a predictable state, a simple surrogate model yields a prediction that the NAO index is more likely to be positive than negative for the next couple of years, followed by several years in which the NAO index is more likely to be negative.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-21
    Description: A model of the North Atlantic Ocean is used to simulate the spreading of CFC‐12 from the Labrador Sea deep convection site. The standard version of the model fails to capture the local maximum in CFC‐12 concentration that is observed along the continental slope of the western boundary. Hydrographic data are used to apply a simple correction to the model's horizontal momentum equations. The corrected model is much more successful at capturing the nearslope maximum in CFC‐12 concentration than the uncorrected model and also exhibits a 50% increase of the deep southward export of CFC‐12 at 24°N. The difference between the two model runs is shown to be a consequence of the different paths taken by the Deep Western Boundary Current in the two model versions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 3473-347.
    Publication Date: 2018-02-14
    Description: Interannual sea surface height (SSH) variability as measured by the Topex/Poseidon satellite altimeters is investigated for the North Atlantic Ocean between 1992 and 1998. The SSH variability exhibits a basin-wide coherent dipole structure between the subtropical and the subpolar North Atlantic. The SSH dipole pattern changed sign between 1995 and 1996, coinciding with a change of sign of the North Atlantic Oscillation (NAO). The large-scale SSH pattern is reproduced with an ocean general circulation model, and can be traced back to changes in the atmospheric forcing related to the NAO. The model reveals that the interannual SSH anomalies are mainly caused by changes in the oceanic heat transport which are connected with the response of the large-scale ocean circulation to changes in the wind stress curl. Variations in the local heat flux reinforce these SSH anomalies but are of minor importance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...