GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
  • 2015-2019  (1)
  • 1
    Publication Date: 2021-03-30
    Description: Anthropogenic atmospheric loading of CO2 raises concerns about combined effects of increasing ocean temperature and acidification, on biological processes. In particular, the response of appendicularian zooplankton to climate change may have significant ecosystem implications as they can alter biogeochemical cycling compared to classical copepod dominated food webs. However, the response of appendicularians to multiple climate drivers and effect on carbon cycling are still not well understood. Here, we investigated how gelatinous zooplankton (appendicularians) affect carbon cycling of marine food webs under conditions predicted by future climate scenarios. Appendicularians performed well in warmer conditions and benefited from low pH levels, which in turn altered the direction of carbon flow. Increased appendicularians removed particles from the water column that might otherwise nourish copepods by increasing carbon transport to depth from continuous discarding of filtration houses and fecal pellets. This helps to remove CO2 from the atmosphere, and may also have fisheries implications.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-27
    Description: Browning caused by colored dissolved organic matter is predicted to have large effects on aquatic ecosystems. However, there is limited experimental evidence about direct and indirect effects of browning on zooplankton in complex field settings. We used a combination of an ecosystem‐scale enclosure experiment and laboratory incubations to test how prolonged browning affects physiological and life‐history traits of the water flea Daphnia longispina, a key species in lake food webs, and whether any such effects are reversible. Daphnids and water were collected from enclosures in a deep clear‐water lake, where the natural plankton community had been exposed for 10 weeks to browning or to control conditions in clear water. Daphnid abundance was much lower in the brown than in the clear enclosure. Surprisingly, however, daphnids continuously kept in brown enclosure water in the laboratory showed increased metabolic performance and survival, and also produced more offspring than daphnids kept in clear enclosure water. This outcome was related to more and higher‐quality seston in brown compared to clear water. Moreover, daphnids transferred from clear to brown water or vice versa adjusted their nucleic acid and protein contents, as indicators of physiological state, to similar levels as individuals previously exposed to the respective recipient environment, indicating immediate and reversible browning effects on metabolic performance. These results demonstrate the importance of conducting experiments in settings that capture both indirect effects (i.e., emerging from species interactions in communities) and direct effects on individuals for assessing impacts of browning and other environmental changes on lakes.
    Description: German Federal Ministry of Education and Research
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: IGB's Frontiers in Freshwater Science program
    Keywords: 551.9 ; Lake Stechlin ; dissolved organic matter
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...