GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (1)
  • royalsocietypublishing.org/journal/rstb  (1)
  • 2020-2024  (1)
  • 2020-2022  (1)
Document type
Years
  • 2020-2024  (1)
  • 2020-2022  (1)
Year
  • 1
    Publication Date: 2024-02-07
    Description: The northern Humboldt Current upwelling system (HCS) belongs to the most productive marine ecosystems, providing five to eight times higher fisheries landings per unit area than other coastal upwelling systems. To solve this “Peruvian puzzle”, to elucidate the pelagic food-web structure and to better understand trophic interactions in the HCS, a combined stable isotope and fatty acid trophic biomarker approach was adopted for key zooplankton taxa and higher trophic positions with an extensive spatial coverage from 8.5 to 16°S and a vertical range down to 1,000 m depth. A pronounced regional shift by up to ∼5‰ in the δ15N baseline of the food web occurred from North to South. Besides regional shifts, δ15N ratios of particulate organic matter (POM) also tended to increase with depth, with differences of up to 3.8‰ between surface waters and the oxygen minimum zone. In consequence, suspension-feeding zooplankton permanently residing at depth had up to ∼6‰ higher δ15N signals than surface-living species or diel vertical migrants. The comprehensive data set covered over 20 zooplankton taxa and indicated that three crustacean species usually are key in the zooplankton community, i.e., the copepods Calanus chilensis at the surface and Eucalanus inermis in the pronounced OMZ and the krill Euphausia mucronata, resulting in an overall low number of major trophic pathways toward anchovies. In addition, the semi-pelagic squat lobster Pleuroncodes monodon appears to play a key role in the benthic-pelagic coupling, as indicated by highest δ13C’ ratios of −14.7‰. If feeding on benthic resources and by diel vertical migration, they provide a unique pathway for returning carbon and energy from the seafloor to the epipelagic layer, increasing the food supply for pelagic fish. Overall, these mechanisms result in a very efficient food chain, channeling energy toward higher trophic positions and partially explaining the “Peruvian puzzle” of enormous fish production in the HCS.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    royalsocietypublishing.org/journal/rstb
    In:  EPIC3Philosophical Transactions of the Royal Society B: Biological Sciences, royalsocietypublishing.org/journal/rstb, 375(1804), pp. 20190647, ISSN: 0962-8436
    Publication Date: 2020-06-17
    Description: The study revealed species- and stage-specific differences in lipid accumulation of the dominant Antarctic copepods, the primarily herbivorous Calanoides acutus (copepodite stage V (CV), females) and the more omnivorous Calanus propinquus (females) storing wax esters and triacylglycerols, respectively, which were collected in summer (end of December). Feeding carbon-labelled diatoms to these copepods, 13C elucidated assimilation and turnover rates of copepod total lipids as well as specific fatty acids and alcohols. The 13C incorporation was monitored by compound-specific stable isotope analysis (CSIA). CV stages of C. acutus exhibited an intense total lipid turnover and 55% of total lipidswere labelled after 9 days of feeding. By contrast, total lipid assimilation of female C. acutus and C. propinquus was lower with 29% and 32%, respectively. The major dietary fatty acids 16:0, 16:1(n − 7) and 20:5(n − 3) had high turnover rates in all specimens. In C. acutus CV, the high rates of the de novo synthesized long-chain monounsaturated fatty acids and alcohols 20:1(n − 9) and 22:1(n − 11) indicate intense lipid deposition, whereas these rates were low in females. The differences in lipid assimilation and turnover clearly show that the copepod species exhibit a high variability and plasticity to adapt their lipid production to their various life phases. This article is part of the theme issue ‘The next horizons for lipids as ‘trophic biomarkers’: evidence and significance of consumer modification of dietary fatty acids’.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...