GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2024  (26)
  • 2020-2022  (8)
  • 2005-2009  (13)
  • 2000-2004  (3)
Schlagwörter
Sprache
Erscheinungszeitraum
Jahr
  • 1
    In: Journal of plankton research, Oxford : Oxford Univ. Press, 1979, 30(2008), 6, Seite 655-672, 1464-3774
    In: volume:30
    In: year:2008
    In: number:6
    In: pages:655-672
    Beschreibung / Inhaltsverzeichnis: Abundance, distribution, population structure, lipid content, lipid composition and reproductive and feeding activity of Rhincalanus nasutus were studied in the Gulf of Aqaba and in the northern Red Sea during RV "Meteor"-cruise M 44-2 in February/March 1999. Rhincalanus nasutus occurred in higher numbers in the Gulf of Aqaba (585 ind m-2) than in the northern Red Sea (254 ind m-2). Young developmental stages (nauplii, copepodite stages CI and CII) were absent. In the southern Gulf of Aqaba, the bulk of the population developed from stage CV to adult in the course of the 3-week study period. In contrast, immature CV stages dominated at the adjacent stations in the northern Gulf of Aqaba and in the northern Red Sea. Development was associated with the seasonal vertical migration from wintering mid-water layers and initiation of feeding starting as early as beginning of March in the southern Gulf of Aqaba. No upward migration was observed in the northern parts of the Gulf and in the northern Red Sea, where more than 90% of the females remained immature during our study. Lipids were dominated by wax esters in females and CV. The fatty acid and fatty alcohol compositions of females were very similar throughout the study region and period. Major fatty acids were 18:1(n-9), 16:1(n-7), 16:2(n-4) and 20:5(n-3). Our results support the previous reports of a seasonal dormancy of R. nasutus in the Gulf of Aqaba and suggest that the timing of vertical migration, feeding and maturation is closely coupled to the development of the spring bloom in oligotrophic subtropical waters.
    Materialart: Online-Ressource
    Seiten: graph. Darst
    ISSN: 1464-3774
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Journal of plankton research, Oxford : Oxford Univ. Press, 1979, 30(2008), 5, Seite 529-550, 1464-3774
    In: volume:30
    In: year:2008
    In: number:5
    In: pages:529-550
    Beschreibung / Inhaltsverzeichnis: The abundance and vertical distribution of microcopepods sampled by nets with 55 My m mesh size was compared for two neighbouring but hydrographically different areas, the Gulf of Aqaba and the northernmost Red Sea, during spring 1999. The vertical structure of the total microcopepod communities differed considerably between the two regimes: In the stratified waters of the Red Sea, calanoids outnumbered oncaeids as well as oithonids at 0- 100 m, whereas oncaeids dominated in all meso- and bathypelagic layers below 100 m deep. In the unusually deep vertically mixed waters of the Gulf of Aqaba, calanoids outnumbered each of the non-calanoid taxa as deep as 250 or 350 m, whereas the oncaeid dominated deep water community was restricted to depth ranges below 400 m. Dominant non-calanoid species in both areas were Oncaea bispinosa, Paroithona pacifica, Oithona simplex, Spinoncaea ivlevi, O. tregoubovi and O. cristata. O. scottodicarloi occurred in exceptionally high numbers in the northern Gulf. Pronounced differences between the two areas were found in the vertical distribution of poecilostomatoid species. By comparing the present results with published data from the central and southern Red Sea and other tropical and warm-temperate oceanic areas, intra- and inter-oceanic differences in the structure of microcopepod communities in oligotrophic areas are discussed. The high abundance and vertically extended range of calanoid copepods during spring appears to be a specific feature of the Gulf of Aqaba, indicating an unusual vertical succession in the trophodynamic structure of the copepod fauna in this area.
    Materialart: Online-Ressource
    Seiten: graph. Darst
    ISSN: 1464-3774
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Faszination Meeresforschung, Bremen : Hauschild, 2006, (2006), Seite 31-39, 3897573105
    In: 9783897573109
    In: year:2006
    In: pages:31-39
    Materialart: Artikel
    Sprache: Deutsch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Schlagwort(e): Forschungsbericht ; Populationsdynamik ; Euphausia superba ; Lazarev-See ; Lipidstoffwechsel
    Materialart: Online-Ressource
    Seiten: Online-Ressource (38 S., 11,9 MB) , Ill., graph. Darst.
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 03F0400B , Unterschiede zwischen der elektronischen Ressource und dem gedruckten Dokument können nicht ausgeschlossen werden. - Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Schlagwort(e): Forschungsbericht
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (22 Seiten, 2,54 MB) , Illustrationen, Diagramme
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 03F0797B , Verbundnummer 01183047
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-03-12
    Beschreibung: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro‐, meso‐ and macrozooplankton) in the ocean biogeochemical model FESOM‐REcoM. In the presented model, microzooplankton is a fast‐growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow‐growing group with a low temperature optimum. Meso‐ and macrozooplankton produce fast‐sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on‐going and future environmental change in model projections.
    Beschreibung: Plain Language Summary: Zooplankton plays an important role in the ocean food web and biogeochemical cycles. However, it is often represented in very simple forms in mathematical models that are, for example, used to investigate how marine primary productivity will react to climate change. To understand how these models would change when more complicated formulations for zooplankton are used, we present here a new version of the model with three (instead of only one) zooplankton groups. We find that this more complicated representation leads to higher zooplankton biomass, which is closer to observations, and this stimulates growth of phytoplankton since zooplankton also returns nutrients into the system. In addition, zooplankton grazing controls the seasonal cycle of phytoplankton, as we show for one example in the Southern Ocean.
    Beschreibung: Key Points: Nutrient recycling by zooplankton stimulates net primary production in the biogeochemical model REcoM‐2. Modeling zooplankton functional types (zPFTs) leads to a switch from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Implementing multiple zPFTs improves the modeled zooplankton biomass and zooplankton‐mediated biogeochemical fluxes.
    Beschreibung: Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System [MarESys]
    Beschreibung: https://doi.org/10.1594/PANGAEA.779970
    Beschreibung: https://doi.org/10.1594/PANGAEA.785501
    Beschreibung: https://doi.org/10.1594/PANGAEA.777398
    Beschreibung: https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
    Beschreibung: http://sites.science.oregonstate.edu/ocean.productivity/index.php
    Beschreibung: https://doi.pangaea.de/10.1594/PANGAEA.942192
    Schlagwort(e): ddc:577.7 ; Southern Ocean ; zooplankton ; ocean food web ; biogeochemical cycles ; modeling
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-03-09
    Beschreibung: A combined stable isotope and fatty acid trophic biomarker approach was adopted for key zooplankton taxa and higher trophic positions of the northern Humboldt Current System to elucidate the pelagic food-web structure and to better understand trophic interactions. Samples covered an extensive spatial range from 8.5°S to 16°S and a vertical range down to 1,000 m depth. Immediately after each haul, specimens were sorted alive in the lab and apparently live and healthy individuals were stored in vials and deep-frozen at -80°C until further lipid and stable isotope analyses. The comprehensive data set covered over 20 zooplankton taxa and indicated that three biomass-rich crustacean species usually dominated the zooplankton community, i.e., the copepods Calanus chilensis at the surface and Eucalanus inermis in the pronounced oxygen minimum zone and the krill Euphausia mucronata, resulting in an overall low number of major trophic pathways toward anchovies. In addition, the semi-pelagic squat lobster Pleuroncodes monodon appears to play a key role in the benthic-pelagic coupling. By partly feeding on benthic resources and by diel vertical migration, P. monodon provides a unique pathway for returning carbon and energy from the sea floor to the epipelagic layer, increasing the food supply for pelagic fish.
    Schlagwort(e): Coastal Upwelling System in a Changing Ocean; CUSCO
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2024-04-20
    Beschreibung: Males of the four crab species Percnon affine (H. Milne Edwards, 1853), Grapsus albolineatus (Latreille in Milbert, 1812), Orisarma intermedium (Schubart &Ng, 2020), and Geothelphusa albogilva (Shy, Ng & Yu, 1994), were collected in the southern part of Taiwan in May 2007. Individuals were starved for 12 days and midgut glands were dissected before and after the starvation period. Midgut glands were lyophilized and total lipids were extracted with dichloromethane:methanol (2:1 per volume) and an aqueous solution of 0.88% KCl. Extracted lipid mass was determined gravimetrically. Lipid classes were separated and quantified using Thin-Layer Chromatography with an integrated flame ionization detector (MK-5 TLC/FID analyzer, Iatron Laboratories). Lipids were converted to fatty acids methyl esters (FAME) by applying methanol containing 3% concentrated sulfuric acid. FAMEs were quantified by gas chromatography equipped with a DB-FFAP column, a programmable temperature vaporizer injector, and a flame ionization detector. Helium was used as carrier gas. Fatty acids were identified by retention times and by using fish oil standard (Marinol). Data are supplement to: Stumpp et al (2021) Dietary preferences of brachyuran crabs from Taiwan for marine or terrestrial food sources: evidence based on fatty acid trophic markers accepted for publication in Frontiers in Zoology
    Schlagwort(e): algae; Decapoda; fatty acids; lipids; midgut gland; triacylglycerols; trophic relationships; vascular plants
    Materialart: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 202.7 kBytes
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2024-05-17
    Schlagwort(e): Prosome, length; Prosome length, standard deviation; Species; TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Materialart: Dataset
    Format: text/tab-separated-values, 561 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2024-05-17
    Schlagwort(e): Acartia, c1-c3, ingestion rate of carbon; Acartia, c4-c5, ingestion rate of carbon; Acartia, female, ingestion rate of carbon; Acartia, male, ingestion rate of carbon; Aetideidae, c1-c3, ingestion rate of carbon; Aetideidae, c4-c5, ingestion rate of carbon; Aetideopsis, c4-c5, ingestion rate of carbon; Aetideus, c4-c5, ingestion rate of carbon; Aetideus, male, ingestion rate of carbon; Aetideus armatus, female, ingestion rate of carbon; Aetideus giesbrechti, female, ingestion rate of carbon; Amallothrix, female, ingestion rate of carbon; Augaptilidae, c1-c3, ingestion rate of carbon; Calanidae, c1-c3, ingestion rate of carbon; Calanoida, biomass as dry weight; Calanoida, ingestion rate of carbon; Calanoida, total; Calanoides natalis, c4-c5, ingestion rate of carbon; Calanoides natalis, female, ingestion rate of carbon; Calanoides natalis, male, ingestion rate of carbon; Calanus agulhensis, c4-c5, ingestion rate of carbon; Calanus agulhensis, female, ingestion rate of carbon; Calanus agulhensis, male, ingestion rate of carbon; Calculated; Candacia, c1-c3, ingestion rate of carbon; Candacia, c4c5, ingestion rate of carbon; Candacia bipinnata, female , ingestion rate of carbon; Candacia curta, female, ingestion rate of carbon; Candacia curta, male, ingestion rate of carbon; Candacia sp., female, ingestion rate of carbon; Centropages brachiatus, c1-c3, ingestion rate of carbon; Centropages brachiatus, c4-c5, ingestion rate of carbon; Centropages brachiatus, female, ingestion rate of carbon; Centropages brachiatus, male, ingestion rate of carbon; Centropages bradyi, c1-c3, ingestion rate of carbon; Centropages bradyi, c4-c5, ingestion rate of carbon; Chiridius gracilis, c4-c5, ingestion rate of carbon; Chiridius gracilis, female, ingestion rate of carbon; Clausocalanidae, ingestion rate of carbon; Comment; Cyclopoida, biomass as dry weight; Cyclopoida, ingestion rate of carbon; Cyclopoida, total; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Elevation of event; Euaugaptilus palumboi, c4-c5, ingestion rate of carbon; Euaugaptilus palumboi, female, ingestion rate of carbon; Eucalanus hyalinus, female, ingestion rate of carbon; Eucalanus hyalinus, male, ingestion rate of carbon; Euchaeta, c1-c3, ingestion rate of carbon; Euchaeta, c4-c5, ingestion rate of carbon; Euchaeta acuta, female, ingestion rate of carbon; Euchaeta acuta, male, ingestion rate of carbon; Euchaeta marina, female, ingestion rate of carbon; Euchaeta media, female, ingestion rate of carbon; Euchaeta sp., male, ingestion rate of carbon; Euchirella rostrata, c4-c5, ingestion rate of carbon; Euchirella sp., c1-c3, ingestion rate of carbon; Euchirella sp., c4-c5, ingestion rate of carbon; Event label; Gaetanus brevispinus, male, ingestion rate of carbon; Gaetanus cf. minor, c1-c3, ingestion rate of carbon; Gaetanus cf. minor, c4-c5, ingestion rate of carbon; Gaetanus sp., c4-c5, ingestion rate of carbon; Gaetanus spp., c1-c3, ingestion rate of carbon; Haloptilus longicornis, c1-c3, ingestion rate of carbon; Haloptilus longicornis, c4-c5, ingestion rate of carbon; Haloptilus longicornis, female, ingestion rate of carbon; Haloptilus oxycephalus, female, ingestion rate of carbon; Heterorhabdus spp., c1-c3, ingestion rate of carbon; Heterorhabdus spp., c4-c5, ingestion rate of carbon; Heterorhabdus spp., female, ingestion rate of carbon; Heterorhabdus spp., male, ingestion rate of carbon; Labidocera acuta, female, ingestion rate of carbon; Latitude of event; Longitude of event; Lophothrix frontalis, c4-c5, ingestion rate of carbon; Lophothrix latipes, female, ingestion rate of carbon; Lucicutia, maleagna, female, ingestion rate of carbon; Lucicutia clausii, c4-c5, ingestion rate of carbon; Lucicutia clausii, female, ingestion rate of carbon; Lucicutia clausii, male, ingestion rate of carbon; Lucicutia gaussae, female, ingestion rate of carbon; Lucicutia ovalis, male, ingestion rate of carbon; Lucicutia spp., c1-c3, ingestion rate of carbon; Lucicutia spp., c4-c5, ingestion rate of carbon; Lucicutia spp., female, ingestion rate of carbon; Lucicutia spp., male, ingestion rate of carbon; M153; M153_11-4; M153_12-4; M153_18-15; M153_6-4; M153_7-5; M153_8-4; M153_9-3; Mesocalanus tenuicornis, c1-c3, ingestion rate of carbon; Mesocalanus tenuicornis, c4-c5, ingestion rate of carbon; Mesocalanus tenuicornis, female, ingestion rate of carbon; Mesocalanus tenuicornis, male, ingestion rate of carbon; Meteor (1986); Metridia brevicauda, c4-c5, ingestion rate of carbon; Metridia brevicauda, female, ingestion rate of carbon; Metridia brevicauda, male, ingestion rate of carbon; Metridia effusa, c4-c5, ingestion rate of carbon; Metridia effusa, female, ingestion rate of carbon; Metridia effusa, male, ingestion rate of carbon; Metridia lucens, c4-c5, ingestion rate of carbon; Metridia lucens, female, ingestion rate of carbon; Metridia lucens, male, ingestion rate of carbon; Metridia venusta, c4-c5, ingestion rate of carbon; Metridia venusta, female, ingestion rate of carbon; Metridia venusta, male, ingestion rate of carbon; Metridinidae, c1-c3, ingestion rate of carbon; Monacilla sp., male, ingestion rate of carbon; MSN; Multiple opening/closing net; Nannocalanus, minor, c4-c5, ingestion rate of carbon; Nannocalanus, minor, female, ingestion rate of carbon; Nannocalanus, minor, male, ingestion rate of carbon; Neocalanus gracilis, c1-c3, ingestion rate of carbon; Neocalanus gracilis, c4-c5, ingestion rate of carbon; Neocalanus gracilis, female, ingestion rate of carbon; Neocalanus gracilis, male, ingestion rate of carbon; Nullosetigera helgae, female, ingestion rate of carbon; Nullosetigera impar, female, ingestion rate of carbon; Nullosetigera spp., c4-c5, ingestion rate of carbon; Oithona, ingestion rate of carbon; Oncaeidae, ingestion rate of carbon; Pareucalanus sp., c1-c3, ingestion rate of carbon; Pareucalanus sp., c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, c1-c3, ingestion rate of carbon; Pleuromamma abdominalis, c4-c5, ingestion rate of carbon; Pleuromamma abdominalis, female, ingestion rate of carbon; Pleuromamma abdominalis, male, ingestion rate of carbon; Pleuromamma quadrungulata, c1-c3, ingestion rate of carbon; Pleuromamma quadrungulata, c4-c5, ingestion rate of carbon; Pleuromamma quadrungulata, female, ingestion rate of carbon; Pleuromamma quadrungulata, male, ingestion rate of carbon; Pleuromamma robusta, c4-c5, ingestion rate of carbon; Pleuromamma robusta, male, ingestion rate of carbon; Pleuromamma spp. small, c4-c5, ingestion rate of carbon; Pleuromamma spp. small, female, ingestion rate of carbon; Pleuromamma spp. small, male, ingestion rate of carbon; Pleuromamma xiphias, c4-c5, ingestion rate of carbon; Pleuromamma xiphias, female, ingestion rate of carbon; Pleuromamma xiphias, male, ingestion rate of carbon; Pseudoamallothrix sp., c4-c5, ingestion rate of carbon; Pseudoamallothrix sp., female, ingestion rate of carbon; Pseudochirella sp., c4-c5, ingestion rate of carbon; Rhincalanus cornutus, c4-c5, ingestion rate of carbon; Rhincalanus cornutus, female, ingestion rate of carbon; Rhincalanus nasutus, c1-c3, ingestion rate of carbon; Rhincalanus nasutus, c4-c5, ingestion rate of carbon; Rhincalanus nasutus, female, ingestion rate of carbon; Rhincalanus nasutus, male, ingestion rate of carbon; Scaphocalanus curtus, female, ingestion rate of carbon; Scaphocalanus spp., c1-c3, ingestion rate of carbon; Scaphocalanus spp., c4-c5, ingestion rate of carbon; Scaphocalanus spp., female, ingestion rate of carbon; Scaphocalanus spp., male, ingestion rate of carbon; Scolecithricella spp., c1-c3, ingestion rate of carbon; Scolecithricella spp., c4-c5, ingestion rate of carbon; Scolecithricella spp., female, ingestion rate of carbon; Scolecithricella spp., male, ingestion rate of carbon; Scolecithrix bradyi, c4-c5, ingestion rate of carbon; Scolecithrix bradyi, female, ingestion rate of carbon; Scolecithrix bradyi, male, ingestion rate of carbon; Scolecithrix
    Materialart: Dataset
    Format: text/tab-separated-values, 4725 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...