GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELSEVIER SCI LTD  (1)
  • ELSEVIER SCIENCE BV  (1)
  • 2020-2023  (1)
  • 2020-2022  (1)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 170, pp. 102020, ISSN: 1385-1101
    Publication Date: 2021-03-02
    Description: Brown shrimp, Crangon crangon, inhabit highly productive sandy and muddy grounds of the southern North Sea. The stomachs of the shrimp contain variable and often high numbers of sediment grains. The function of sediment grains inside the stomach and the purpose of their ingestion are only poorly understood. We tested in laboratory experiments whether sediment and associated organic material complement the natural food of C. crangon or if sand grains may be used by the shrimp to support trituration and maceration of ingested food. The shrimp showed no notable preference for sediment with natural organic content over sediment with reduced organic content, limited ingestion of sediment upon starvation, and no additional uptake of sand grains after feeding. Instead, C. crangon took up sediment only while feeding on regular food, suggesting that sand grains are not ingested intentionally but rather incidentally as a side effect of hasty gobbling. This conclusion is supported by the highly variable uptake of sand grains among individuals. Under experimental conditions, sand grains from sediments do not seem to have a crucial function in food processing and digestion in brown shrimp.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Environmental Pollution, ELSEVIER SCI LTD, 302, ISSN: 0269-7491
    Publication Date: 2022-07-05
    Description: Marine invertebrates inhabiting estuaries and coastal areas are exposed to natural suspended particulate matter (SPM) like clay or diatom shells but also to anthropogenic particles like microplastics. SPM concentrations may reach 1 g per liter and more, comprising hundreds of millions of items in the size range of less than 100 μm. Suspension feeders and deposit feeders involuntarily ingest these particles along with their food. We investigated whether natural and anthropogenic microparticles at concentrations of 20 mg L−1, which correspond to natural environmental SPM concentrations in coastal marine waters, are ingested by the brown shrimp Crangon crangon and whether these particles induce an oxidative stress response in digestive gland tissue. Shrimp were exposed to clay, silica, TiO2, polyvinyl chloride (PVC), or polylactide microplastics (PLA) for 6, 12, 24, and 48 h, respectively. The activities of the anti-oxidative enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured. All five particle types were ingested by the shrimp along with food. The presence of the particles in the shrimp stomach was verified by scanning electron microscopy. The activities of the anti-oxidative enzymes did not vary between animals exposed to different types of microparticles and control animals that did not receive particles. The temporal activity differed between the three enzymes. The lack of a specific biochemical response may reflect an adaptation of C. crangon to life in an environment where frequent ingestion of non-digestible microparticles is unavoidable and continuous maintenance of inducible biochemical defense would be energetically costly. Habitat characteristics as well as natural feeding habits may be important factors to consider in the interpretation of hazard and species-specific risk assessment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...