GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (631)
  • 2020-2023  (3)
  • 2020-2022  (13)
Document type
Keywords
Language
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Aim: The aim was to evaluate the effects of climate warming on biodiversity across spatial scales (i.e., alpha-, beta- and gamma-diversity) and the effects of patch openness and experimental context on diversity responses. Location: Global. Time period: 1995-2017. Major taxa studied: Fungi, invertebrates, phytoplankton, plants, seaweed, soil microbes and zooplankton. Methods: We compiled data from warming experiments and conducted a meta-analysis to evaluate the effects of warming on different components of diversity (such as species richness and equivalent numbers) at different spatial scales (alpha-, beta- and gamma-diversity, partitioning beta-diversity into species turnover and nestedness components). We also investigated how these effects were modulated by system openness, defined as the possibility of replicates being colonized by new species, and experimental context (duration, mean temperature change and ecosystem type). Results: Experimental warming did not affect local species richness (alpha-diversity) but decreased effective numbers of species by affecting species dominance. Warming increased species spatial turnover (beta-diversity), although no significant changes were detected at the regional scale (gamma-diversity). Site openness and experimental context did not significantly affect our results, despite significant heterogeneity in the effect sizes of alpha- and beta-diversity. Main conclusions: Our meta-analysis shows that the effects of warming on biodiversity are scale dependent. The local and regional inventory diversity remain unaltered, whereas species composition across temperature gradients and the patterns of species dominance change with temperature, creating novel communities that might be harder to predict.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-24
    Description: Der Biodiversitätsverlust schreitet in bedrohlichem Ausmaß voran. Mit dem Global Biodiversity Framework und voraussichtlich dem Nature Restoration Law bestehen nun auf internationaler und europäischer Ebene vielversprechende Ansätze, ihm Herr zu werden. Jetzt ist der Bundesgesetzgeber – nicht zuletzt aus verfassungsrechtlichen Erwägungen – aufgerufen, daran anzuknüpfen. Dazu bietet sich die Regelungsform eines Rahmen- und Politikplanungsgesetzes an, wie sie schon aus dem Klimaschutzgesetz und dem Klimaanpassungsgesetz bekannt ist. Der Aufsatz beleuchtet den internationalen, europa- und verfassungsrechtlichen Hintergrund eines solchen ‘Biodiversitätsschutzgesetzes’ und diskutiert – unter Zusammenarbeit sowohl rechts- als auch naturwissenschaftlicher Autor:innen – formale und materielle Ausgestaltungsmöglichkeiten.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ROYAL SOC
    In:  EPIC3Philosophical Transactions of the Royal Society B-Biological Sciences, ROYAL SOC, 375(1814), ISSN: 0962-8436
    Publication Date: 2020-11-12
    Description: Whereas the conservation and management of biodiversity has become a key issue in environmental sciences and policy in general, the conservation of marine biodiversity faces additional challenges such as the challenges of accessing field sites (e.g. polar, deep sea), knowledge gaps regarding biodiversity trends, high mobility of many organisms in fluid environments, and ecosystem-specific obstacles to stakeholder engagement and governance. This issue comprises contributions from a diverse international group of scientists in a benchmarking volume for a common research agenda on marine conservation. We begin by addressing information gaps on marine biodiversity trends through novel approaches and technologies, then linking such information to ecosystem functioning through a focus on traits. We then leverage the knowledge of these relationships to inform theory aiming at predicting the future composition and functioning of marine communities. Finally, we elucidate the linkages between marine ecosystems and human societies by examining economic, management and governance approaches that contribute to effective marine conservation in practice. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-21
    Description: To understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4,600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that ‘safe-operating spaces’ are unlikely to be quantifiable.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Inter-Research
    In:  EPIC3Marine Ecology Progress Series, Inter-Research, 638, pp. 191-206
    Publication Date: 2020-04-17
    Description: ABSTRACT: To date, the majority of studies investigating marine mammal distribution and behavior take a single-species perspective, which is often driven by the logistic difficulties of collecting appropriate data at sea. Passive acoustic monitoring, provided recording tools exhibit sufficient bandwidth, has the potential to provide insights into community structure as devices operate autonomously simultaneously collecting data on baleen, pinniped and toothed whale acoustic presence. Data can provide information on local species diversity, residency times and co-occurrence. Here, we used multi-year passive acoustic data from 6 sites in the Weddell Sea, Southern Ocean, to explore how local marine mammal community compositions develop over time and in relation to sea-ice. Diversity peaked in austral late spring and early summer, shortly before seasonal sea-ice break-up. The effective number of species exhibited little variation over time, reflecting that species remain in Antarctic waters throughout austral winter. Community composition showed almost complete seasonal overturn, indicating that species replace each other throughout the year. For all 6 sites, community dissimilarity increased with increasing temporal distance, reflecting temporal trends in community composition beyond seasonality. Several species exhibited significant positive or negative co-occurrence patterns over time. These seasonal associations were consistent across all 5 oceanic sites, but partly inversed at the Western Antarctic Peninsula recording site. This study shows that the application of biodiversity metrics to passive acoustic monitoring data can foster insights into the timing of behaviors and community composition, which can boost the interpretation of responses in the light of ongoing environmental changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-13
    Description: The sea surface microlayer (SML) is the boundary layer between the ocean and the atmosphere and plays a unique role in marine biogeochemistry. Phytoplankton communities in this uppermost surface layer are exposed to extreme ultraviolet (UV) radiation and potentially high nutrient supplies. In order to understand the response of SML communities to such contrasting conditions, we conducted experiments at three different sites, the North Sea (open ocean) and two sites, outer and middle fjord, in the Sognefjord, Norway, with differing physical and chemical parameters. We manipulated light, nitrogen (N) and phosphorus (P) supply to natural communities collected from the SML and compared their response to that of the underlying water (ULW) communities at 1-m depth. Phytoplankton communities in both SML and ULW responded significantly to N addition, suggesting the upper 1-m surface phytoplankton communities were N-limited. While phytoplankton growth rates were higher with high N and high light supply, biomass yield was higher under low light conditions and with a combined N and P supply. Furthermore, biomass yield was generally higher in the ULW communities compared to SML communities. Nutrient and light effects on phytoplankton growth rates, particulate organic carbon (POC) and stoichiometry varied with geographical location. Phytoplankton growth rates in both SML and ULW at the open ocean station, the site with highest salinity, did not respond to light changes, whereas the communities in the middle fjord, characterized by high turbidity and low salinity, did experience light limitation. This work on the upper surface phytoplankton communities provides new insights into possible effects of coastal darkening and increases understanding of oceanic biogeochemical cycling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Research
    In:  EPIC3Scientific Reports, Nature Research, 10(5911), ISSN: 2045-2322
    Publication Date: 2020-08-13
    Description: Pronounced atmospheric and oceanic warming along the West Antarctic Peninsula (WAP) has resulted in abundance shifts in populations of Antarctic krill and Salpa thompsoni determined by changes in the timing of sea-ice advance, the duration of sea-ice cover and food availability. Krill and salps represent the most important macrozooplankton grazers at the WAP, but differ profoundly in their feeding biology, population dynamics and stoichiometry of excretion products with potential consequences for the relative availability of dissolved nitrogen and phosphorus. Alternation of the dissolved nutrient pool due to shifts in krill and salp densities have been hypothesized but never explicitly tested by using observational data. We therefore used the Palmer LTER dataset in order to investigate whether the dominance of either grazer is related with the observed dissolved nitrogen:phosphorus (N:P) ratios at the WAP. Across the whole sampling grid, the dominance of salps over krill was significantly correlated to higher concentrations of both N and P as well as a higher N:P ratios. Using actual long-term data, our study shows for the first time that changes in key grazer dominance may have consequences for the dynamics of dissolved nitrogen and phosphorus at the WAP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ROYAL SOC
    In:  EPIC3Philosophical Transactions of the Royal Society B-Biological Sciences, ROYAL SOC, 375, pp. 20190452, ISSN: 0962-8436
    Publication Date: 2020-11-03
    Description: Whereas the anthropogenic impact on marine biodiversity is undebated, the quantification and prediction of this change are not trivial. Simple traditional measures of biodiversity (e.g. richness, diversity indices) do not capture the magnitude and direction of changes in species or functional composition. In this paper, we apply recently developed methods for measuring biodiversity turnover to time-series data of four broad taxonomic groups from two coastal regions: the southern North Sea (Germany) and the South African coast. Both areas share geomorphological features and ecosystem types, allowing for a critical assessment of the most informative metrics of biodiversity change across organism groups. We found little evidence for directional trends in univariate metrics of diversity for either the effective number of taxa or the amount of richness change. However, turnover in composition was high (on average nearly 30% of identities when addressing presence or absence of species) and even higher when taking the relative dominance of species into account. This turnover accumulated over time at similar rates across regions and organism groups. We conclude that biodiversity metrics responsive to turnover provide a more accurate reflection of community change relative to conventional metrics (absolute richness or relative abundance) and are spatially broadly applicable. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Conservation Biology, WILEY-BLACKWELL PUBLISHING, ISSN: 0888-8892
    Publication Date: 2020-11-26
    Description: Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site‐selection biases influence estimates of biodiversity change is largely unknown. Site‐selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site‐selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site‐selection bias. We used a simple spatially resolved, individual‐based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site‐selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site‐selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site‐selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site‐selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site‐selection bias, we recommend use of systematic site‐selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site‐selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Global Ecology and Biogeography, WILEY-BLACKWELL PUBLISHING, 29(6), pp. 1008-1019, ISSN: 1466-822X
    Publication Date: 2020-06-17
    Description: Aim Biodiversity dynamics comprise evolutionary and ecological changes on multiple temporal scales from millions of years to decades, but they are often interpreted within a single time frame. Planktonic foraminifera communities offer a unique opportunity for analysing the dynamics of marine biodiversity over different temporal scales. Our study aims to provide a baseline for assessments of biodiversity patterns over multiple time-scales, which is urgently needed to interpret biodiversity responses to increasing anthropogenic pressure. Location Global (26 sites). Time period Five time-scales: multi-million-year (0-7 Myr), million-year (0-0.5 Myr), multi-millennial (0-15 thousand years), millennial (0-1,100 years) and decadal (0-32 years). Major taxa studied Planktonic foraminifera. Methods We analysed community composition of planktonic foraminifera at five time-scales, combining measures of standing diversity (richness and effective number of species, ENS) with measures of temporal community turnover (presence-absence-based, dominance-based). Observed biodiversity patterns were compared with the outcome of a neutral model to separate the effects of sampling resolution (the highest in the shortest time series) from biological responses. Results Richness and ENS decreased from multi-million-year to millennial time-scales, but higher standing diversity was observed on the decadal scale. As predicted by the neutral model, turnover in species identity and dominance was strongest at the multi-million-year time-scale and decreased towards the millennial scale. However, contrary to the model predictions, modern time series show rapid decadal variation in the dominance structure of foraminifera communities, which is of comparable magnitude as over much longer time periods. Community turnover was significantly correlated with global temperature change, but not on the shortest time-scale. Main conclusions Biodiversity patterns can be to some degree predicted from the scaling effects related to different durations of time series, but changes in the dominance structure observed over the last few decades reach higher magnitude, probably forced by anthropogenic effects, than those observed over much longer durations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...