GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Raw materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (237 pages)
    Edition: 1st ed.
    ISBN: 9781000596465
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Graphene from Sugar and Sugarcane Extract: Synthesis, Characterization, and Applications -- Chapter 2: Graphene from Honey -- Chapter 3: Graphene from Animal Waste -- Chapter 4: Graphene from Essential Oils -- Chapter 5: Synthesis of Graphene from Biowastes -- Chapter 6: Graphene from Rice Husk -- Chapter 7: Synthesis of Graphene from Vegetable Waste -- Chapter 8: Graphene Oxide from Natural Products and Its Applications in the Agriculture and Food Industry -- Chapter 9: Graphene from Sugarcane Bagasse: Synthesis, Characterization, and Applications -- Chapter 10: Graphene Synthesis, Characterization and Applications -- Chapter 11: Graphene from Leaf Wastes -- Chapter 12: Biosynthesis of Reduced Graphene Oxide and Its Functionality as an Antibacterial Template -- Chapter 13: Graphene and Its Composite for Supercapacitor Applications -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Semiconductors-Optical properties. ; Electronic books.
    Description / Table of Contents: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Piezoelectric materials. ; Electronic books.
    Description / Table of Contents: The book reviews our current knowledge of piezoelectric materials, including their history, developments, properties, process design, and technical applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9781644902097
    Series Statement: Materials Research Foundations Series ; v.131
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Types, Properties and Characteristics of Piezoelectric Materials -- 1. Introduction -- 1.1 Single crystals -- 1.2 Ceramics -- 1.3 Composites -- 1.4 Polymers -- 1.5 Sensor configuration based on shape and size -- 1.6 Classification based on dimension -- 2. Properties of piezoelectric materials -- 2.1 Basic equations -- 2.2 Curie temperature -- 2.3 Phase transition -- 2.4 High dielectric constant -- 2.5 Sensitivity -- 2.6 Electromechanical Coupling Factor (k) -- 2.7 Resistivity (R) and time constant (RC) -- 2.7 Quality factors (mechanical and electrical) -- 2.8 Figure of Merit (FOM) and strain coefficient -- 2.9 Piezoelectric resonance frequency -- 2.10 Thermal expansion -- 2.11 Ageing -- 3. Characterization of piezoelectric materials -- 3.1 Measurement of piezoelectric coefficient -- 3.2 Measurement of dielectric constant -- 3.3 Measurement of Curie temperature -- 3.4 Etching and poling -- 3.5 Measurement of hysteresis (PE/SE) loops -- Conclusions -- References -- 2 -- Fabrication Approaches for Piezoelectric Materials -- 1. Introduction -- 2. Preparation techniques for piezoelectric ceramics -- 2.1 Synthesis of ceramic powders -- 2.1 Solid-state reaction -- 2.2 Co-precipitation -- 2.3 Alkoxide hydrolysis -- 2.4 The sintering method -- 2.5 Templated grain growth -- 3. Piezoelectric materials in device fabrication -- 4. Bio-piezoelectric materials -- 4.1 Types bio-piezoelectric materials -- 4.2 Synthesis strategies -- 4.2.1 Thin films -- 4.2.2 Nanoplatforms -- 5. Challenges -- 5.1 Piezoelectric ceramics -- 5.2 Bio-piezoelectric materials -- Conclusion -- References -- 3 -- Piezoelectric Materials-based Nanogenerators -- 1. Introduction -- 2. Piezoelectricity and crystallography -- 3. Maxwell's equations and piezoelectric nanogenerator -- 4. Piezoelectric materials for nanogenerators. , 4.1 Ceramic -- 4.1.1 Zinc oxide -- 4.1.2 Barium titanate -- 4.1.3 Lead zirconate titanate (PZT) -- 4.2 Polymer -- 4.2.1 PVDF and its copolymer -- 4.2.2 Polylactic acid -- 4.2.3 Cellulose -- 4.3 Ferroelectret -- 4.4 PVDF based composite -- 4.4.1 Ceramic filler -- 4.4.2 Carbon-based filler -- 4.4.3 Metal based filler -- 4.4.4 Other fillers -- 5. Applications of piezoelectric nanogenerator -- 5.1 Power source of electronic devices -- 5.2 Sensing application -- 6. Challenges and future scopes -- Conclusions -- Acknowledgement -- References -- 4 -- Piezoelectric Materials based Phototronics -- 1. Introduction -- 1.1 Piezoelectric effect -- 1.2 Piezotronic effect -- 2. Piezo-phototronic effect -- 3. Piezoelectric semiconductor NWs -- 4. Effect on 2D materials -- 5. Effect on 3rd generation semiconductors -- 6. Piezo-phototronic effect on LED -- 7. Piezo-phototronic effect on solar cell -- 8. Piezo-phototronics in luminescence applications -- 9. Piezo-phototronics in other applications -- References -- 5 -- Piezoelectric Composites and their Applications -- 1. Introduction -- 2. The mechanism of piezoelectricity and principle of PZT-polymer composites -- 3. Piezoelectric materials -- 4 Applications of piezoelectric composite materials -- 4.1 Energy harvesting applications -- 4.2 Medical applications of piezoelectric materials -- 4.2.1 Piezoelectric medical devices -- 4.2.2 Piezoelectric sensors -- 4.2.3 Piezoelectric prosthetic skin -- 4.2.4 Cochlear implants -- 4.2.5 Piezoelectric surgery -- 4.2.6 Ultrasonic dental scaling -- 4.2.7 Microdosing -- 4.2.8 Energy harvesting -- 4.2.9 Catheter applications -- 4.2.10 Neural stimulators -- 4.2.11 Healthcare monitoring -- 5. Structural health monitoring and repair -- Conclusion -- References -- 6 -- Piezoelectric Materials for Biomedical and Energy Harvesting Applications -- 1. Introduction. , 1.1 Types of advance piezoelectric functional materials -- 1.1.1 Polymer piezocomposite -- 1.1.2 Ceramics piezocomposite -- 1.1.3 Polymer ceramics piezocomposite -- 2. Applications -- 2.1 Microelectromechanical system (MEMS) devices -- 2.2 MEMS generators for energy harvesting -- 2.3 MEMS sensor -- 2.3.1 Pressure sensor -- 2.3.2 Healthcare sensor -- 2.3.3 Cell and tisusse regenration -- Conclusion -- Reference -- 7 -- Piezoelectric Thin Films and their Applications -- 1. Piezoelectric thin films -- 2. Lead free piezoelectric thin films -- 2.1 AlN thin films -- 2.2 ZnO thin films -- 2.2.1 Synthesis of ZnO thin films -- 2.3 KNN thin films -- 2.3.1 Synthesis of KNN thin films -- 3. Characterization techniques for piezoelectric thin film -- 3.1 Resonance spectrum method -- 3.2 Pneumatic loading method and normal loading method -- 3.3 Characterizations using capacitance measurements -- 4. Applications -- 4.1 Energy harvesting -- 4.2 Actuators -- 4.3 Electronics -- 4.4 Acoustic biosensors -- 4.5 Surface acoustic wave (SAW) biosensors -- 5. Recent developments in piezoelectric thin film devices -- Conclusion -- References -- 8 -- Bulk Lead-Free Piezoelectric Perovskites and their Applications -- 1. Perovskites -- 2. Lead free perovskites -- 3. Processing of lead-free perovskites -- 4. Piezoelectricity in lead free perovskite -- 4.1 Fundamentals of piezoelectricity -- 5. Different lead-free piezoceramics and their applications -- 5.1 KNN based ceramics -- 5.2 Bismuth sodium titanate based piezoceramics and their applications -- 5.3 BaTiO3 (BT) based piezo-ceramics -- 5.3.1 BaTiO3 ceramics phase boundary -- 5.3.2 Factors in phase boundaries -- 5.3.3 Sintering and curie temperature -- 5.4 Bismuth based piezoceramics -- 5.4.1 Phase boundary in BFO-based ceramics -- 5.4.1.1 Ion substitution -- 5.4.1.2 Addition of ABO3. , 5.4.2 Temperature stability of strain properties -- 5.4.3 Relationship between piezoelectricity and phase boundaries -- 6. Requirements for piezoceramic applications -- 6.1 Actuators -- 6.2 Sensors -- 6.3 Transducers -- 6.3.1 Piezoelectric transducers -- 6.4 Resonators -- Conclusion -- References -- 9 -- Piezoelectric Materials for Sensor Applications -- 1. Introduction -- 2. Piezoelectric mechanism -- 3. Types of piezoelectric materials -- 4. Fabrication methods -- 5. Applications of piezoelectric materials -- 5.1 Applications in wearable and implanted biomedical devices -- 5.2 Piezoelectric materials for energy applications -- 5.3 Piezoelectric materials in tissue engineering -- 5.4 Piezoelectric materials in other applications -- Conclusion and outlook -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (734 pages)
    Edition: 1st ed.
    ISBN: 9789811622250
    Series Statement: Environmental and Microbial Biotechnology Series
    Language: English
    Note: Intro -- Contents -- About the Editors -- 1: Application of Endophyte Microbes for Production of Secondary Metabolites -- 1.1 Introduction -- 1.2 Origin and Evolution of Endophytes -- 1.3 Endophyte Diversity -- 1.4 Close Relationship Between Endophytes and Medicinal Herbs -- 1.5 Endophytes and Secondary Metabolites -- 1.6 Terpenoids -- 1.7 Phenolics -- 1.8 Flavonoids -- 1.9 Alkaloids -- 1.10 Glycosides -- 1.11 Saponins -- 1.12 Polyketides -- 1.13 Coumarins -- 1.14 Steroids -- 1.15 Conclusion and Perspectives -- References -- 2: Application of Microbes in Synthesis of Electrode Materials for Supercapacitors -- 2.1 Introduction -- 2.1.1 Basics of Supercapacitors -- 2.1.2 Electrode Materials for Supercapacitors -- 2.1.3 Why Microbes in Energy Storage Devices? -- 2.2 Different Microbes Commonly Used in EES -- 2.2.1 Bacteria -- What so Special About Bacterial Cellulose? -- 2.2.2 Viruses -- 2.2.3 Fungi -- 2.3 Microbes as Bio-templates for Energy Storage Materials -- 2.3.1 Bacteria as Bio-templates -- 2.3.2 Fungi as Bio-templates -- 2.3.3 Viruses as Bio-templates -- 2.4 Microbe-Based Carbon Materials as Supporting Matrix -- 2.5 Microbe-Derived Carbons for Energy Storage Applications -- 2.5.1 Bacteria-Derived Carbons for Energy storage applications -- 2.5.2 Fungi-Derived Carbons for Energy Storage Applications -- 2.5.3 Microbe-Derived Carbon-Based Nanocomposites as Energy Storage Materials -- 2.6 Conclusion and Future Prospects -- References -- 3: Application of Microbes in Climate-Resilient Crops -- 3.1 Introduction -- 3.2 Heat Stress Tolerance -- 3.3 Cold Stress Tolerance -- 3.4 Submergence Stress Tolerance -- 3.5 Salinity and Drought Stress Tolerance -- 3.6 Conclusion and Future Perspectives -- References -- 4: Application of Microbes in Biotechnology, Industry, and Medical Field -- 4.1 Overview of Microorganisms -- 4.1.1 Prokaryotic Microorganisms. , Bacteria -- Archaea -- 4.1.2 Eukaryotic Microorganisms -- Protist -- Fungi -- Virus -- 4.2 Principles -- 4.2.1 Screening for Microbial Products -- Screening Methods -- 4.2.2 Microbial Bioprocess -- Optimization -- Sustainable Technologies -- 4.2.3 Enzymology -- 4.2.4 Gene Manipulation -- Recombinant DNA Technology -- 4.3 Applications -- 4.3.1 Industry -- Food-Fermented Foods -- Improvement of Food Quality -- Improvement Efficiency and Productivity of Process -- Food Additives -- Agroindustry -- Pest in Crops -- Crop Yield and Product Quality -- Construction -- Chemical Industry -- Cleaning -- Bioremediation -- Chemical-Based Cleaning Products -- 4.3.2 Environment -- Wastewater Treatment -- Solid Hazardous Treatment -- Composting -- Anaerobic Digestion -- Metal Recovery -- Microbial Biofuels -- Biomethanol -- Bioethanol -- Butanol -- Biodiesel -- Medical Biotechnology -- 4.4 Conclusions -- References -- 5: Applications of Microbes for Energy -- 5.1 Introduction -- 5.2 Microbes for Energy Applications -- 5.2.1 Microbes for Fuel Cells -- 5.2.2 Microbes for Hydrogen Production -- 5.2.3 Microbes for Methane Production -- 5.2.4 Microbes for Ethanol Production -- 5.2.5 Microbes for Biodiesel Production -- 5.2.6 Microbes for Electrosynthesis -- 5.2.7 Microbes for Energy Storage -- 5.3 Conclusion and Future Remarks -- References -- 6: Applications of Microbes in Electric Generation -- 6.1 Introduction -- 6.2 Different BFC Types -- 6.2.1 DET-BFC -- 6.2.2 MET-BFC -- 6.2.3 EBFC -- 6.2.4 MFC -- 6.3 Electrocatalytic Nanomaterials for EBFC -- 6.3.1 Carbon Materials -- 6.3.2 Metal Nanoparticles -- 6.3.3 Composite Materials -- 6.4 Electrocatalytic Nanomaterials for MFC -- 6.4.1 Electrocatalytic Nanomaterials for MFC Anode -- Carbon Nanomaterials -- Metal Nanomaterials -- Conductive Polymers -- 6.4.2 Electrocatalytic Nanomaterials for MFC Cathode. , Noble Metal-Based Materials -- Non-noble Metal-Based Materials -- 6.5 Summary and Prospect -- References -- 7: Application of Microbes in Household Products -- 7.1 Introduction -- 7.2 Household Products -- 7.2.1 Cleaning Product -- 7.2.2 Cosmeceutical -- 7.2.3 Textiles -- 7.2.4 Others -- 7.3 Benefits and Challenges -- 7.4 Conclusion -- References -- 8: Electricity Generation and Wastewater Treatment with Membrane-Less Microbial Fuel Cell -- 8.1 Introduction -- 8.2 Electricity Generation -- 8.2.1 Anode and Cathode Electrodes -- Cathode Electrode -- Anode Electrode -- 8.2.2 Effect of Operating Temperature -- 8.2.3 Effect of pH -- 8.2.4 Effect of Substrate Pretreatment -- 8.2.5 Effect of Reactor Design -- 8.2.6 Effect of Electrode Surface Area and Electrode Spacing -- 8.2.7 Effect of Substrate Conductivity -- 8.3 Water Treatment (Substrate) -- 8.4 Conclusion -- References -- 9: Microbes: Applications for Power Generation -- 9.1 Introduction -- 9.2 Reduction of the Environmental and Air Pollution -- 9.2.1 Natural Aerosols from Vegetation -- 9.2.2 Landfill Gas -- 9.2.3 Biogas -- Using Leachate of the Waste -- 9.2.4 Biodiesel -- 9.2.5 Bioethanol -- Using Celluloses -- Using Starch -- Using Sugar -- 9.2.6 Sewer -- 9.3 Energy Efficiency -- 9.3.1 Microorganisms -- 9.3.2 Microbial Fuel Cells -- Using Natural Fermentation -- Using Biomass -- Using Domestic Wastewater -- Using Industrial Wastewater -- Using Sewage -- Using Crop Residue -- Using Mud -- Using Biogas Slurry -- 9.3.3 Newer Microbial Fuel Cells -- Using Electronophore (Traditional) -- Using Biochar (Latest) -- 9.3.4 Biogas -- Using Sewage -- Using Animal Waste -- Using Animal Manure -- 9.3.5 Biohydrogen -- 9.4 Availability -- 9.4.1 Biomass -- 9.5 Clean Energy -- 9.5.1 Algae -- 9.5.2 Microbial Biophotovoltaic Cells -- Using Algae -- Using Cyanobacteria -- Using Plant Rhizodeposition. , 9.6 Sustainability -- 9.6.1 Biomass -- Crop Residue -- 9.6.2 Camphor -- 9.7 Conclusion -- 9.8 Future Approach -- References -- 10: Applications of Microbes in Food Industry -- 10.1 Introduction -- 10.2 Applications of Microorganisms in Food Industry -- 10.2.1 Baking Industry Applications -- 10.2.2 Alcohol and Beverage Industry Applications -- 10.2.3 Enzyme Production and Its Applications -- 10.2.4 Production of Amino Acids -- 10.2.5 Microbial Detergents as Food Stain Removers -- 10.2.6 Dairy Industry Applications -- 10.2.7 Pigment Production -- 10.2.8 Organic Acid Production -- 10.2.9 Aroma and Flavouring Agents Production -- 10.2.10 Miscellaneous Applications -- Xanthan Gum Production -- Ripening Process -- Food Grade Paper Production -- Single-Cell Protein -- Applications in Other Foods -- 10.3 Summary -- References -- 11: Applications of Microbes in Human Health -- 11.1 Introduction -- 11.2 Human Microbiome -- 11.3 Probiotics -- 11.4 Properties of Probiotics -- 11.5 Probiotics Mechanism of Action -- 11.6 Oral Probiotics -- 11.6.1 Probiotics in Preventing Dental Caries Progression -- 11.6.2 Probiotics in Prevention of Gingival Inflammation -- 11.6.3 Probiotics in Prevention of Periodontal Diseases -- 11.7 Probiotics in Halitosis -- 11.7.1 Probiotics in Oral Mucositis -- 11.7.2 Benefits of Probiotics in General Health -- 11.7.3 Anti-Inflammatory Property -- 11.8 Antimicrobial Properties -- 11.9 Antioxidant Properties -- 11.10 Anticancer Properties -- 11.10.1 Probiotics in Treatment of Upper Respiratory Tract Infections -- 11.10.2 Probiotics in Treatment of Urogenital Infections -- 11.10.3 Probiotics in Improvement of Intestinal Health -- 11.10.4 Probiotics in Treatment of Chemotherapy and Radiotherapy Induced Diarrhea -- 11.10.5 Probiotics in Treatment of Anemia -- 11.11 Treatment and Prevention of Obesity -- 11.12 Probiotics as Immunomodulator. , 11.13 Conclusion -- References -- 12: Applications of Microbes in Soil Health Maintenance for Agricultural Applications -- 12.1 Introduction -- 12.2 Microbial Sources -- 12.2.1 Microalgae and Cyanobacteria -- 12.2.2 Fungi -- 12.2.3 Bacteria -- 12.3 Applications of Microbes -- 12.3.1 Plant Growth Regulators -- 12.3.2 Volatile Organic Compounds (VOCs) -- 12.3.3 Biotic Elicitors -- 12.3.4 Bioremediation -- 12.3.5 Biocontrol -- 12.3.6 Different Types of Microbes -- 12.4 Healthy Soil and Eco-Friendly Environment -- 12.4.1 Biofertilizers -- 12.4.2 Biopesticides -- 12.4.3 Bioherbicides -- 12.4.4 Bioinsecticides -- 12.5 Microbiome and Sustainable Agriculture -- 12.5.1 Benefits of Mycorrhizal Fungi -- 12.5.2 Soil and Environmental Health -- 12.6 Conclusion -- References -- 13: Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production -- 13.1 Introduction -- 13.2 Wastewater Treatment Using Microalgae -- 13.2.1 Wastewater Composition -- 13.2.2 Nutrient Removal -- Influence of Additives in Wastewater on Nutrient Removal by Microalgae -- 13.2.3 Heavy Metal Removal -- 13.3 Microalgae Cultivation and Harvesting -- 13.3.1 Open Ponds -- 13.3.2 Closed System (Photobioreactor PBRs) -- 13.3.3 Hybrid System -- 13.3.4 Harvesting Techniques -- 13.4 Bio-refinery -- 13.5 Bio-fuel Production Using Microalgae -- 13.5.1 Thermochemical Conversion -- 13.5.2 Biochemical Conversion/Fermentation -- 13.5.3 Chemical Reaction/Transesterification -- 13.5.4 Direct Combustion -- 13.6 Sustainability of Energy from Microalgae -- 13.7 Conclusions -- References -- 14: Microalgae Application in Chemicals, Enzymes, and Bioactive Molecules -- 14.1 Introduction -- 14.2 Microalgae-Based Products -- 14.2.1 Chemical Products -- 14.2.2 Bioactive Molecules -- 14.3 Microalgae Enzymes -- 14.4 Industrial Applications of Microalgae. , 14.5 Conclusions and Future Perspectives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Enzymes--Biotechnology. ; Electronic books.
    Description / Table of Contents: The book presents recent advances in the field of nanoenzymes and the immobilization of enzymes in nanomaterials.
    Type of Medium: Online Resource
    Pages: 1 online resource (270 pages)
    Edition: 1st ed.
    ISBN: 9781644901977
    Series Statement: Materials Research Foundations Series ; v.126
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Recent Advances in Enzyme Immobilization in Nanomaterials -- 1. Enzymes and their uses/ applications/ functions -- 1.2 Definition of enzyme -- 1.2 History & -- etymology of enzymes -- 1.3 Nomenclature -- 1.4 Enzyme activity -- 1.5 Sequence similarity -- 1.6 Chemical structure -- 1.6.1 Co-factor -- 1.6.2 Co-enzymes -- 1.6.3 Inhibitor -- 1.6.3.1 Competitive -- 1.6.3.2 Non-competitive -- 1.6.3.3 Uncompetitive -- 1.6.3.4 Mixed -- 1.6.3.5 Irreversible -- 1.6.4 Functions of inhibitors -- 1.7 Mechanism of enzymes working -- 1.7.1 Substrate binding -- 1.7.2 "Lock and key" model -- 1.7.3 "Induced fit" model -- 1.7.4 Catalysis -- 1.7.5 Dynamics -- 1.7.6 Substrate presentation -- 1.7.7 Allosteric modulation -- 1.8 Factor affecting enzymes activity -- 1.9 Functions -- 1.9.1 Biological functions -- 1.9.1.1 Metabolism -- 1.9.1.2 Control activity -- 1.9.1.2.1 Regulation -- 1.9.1.2.2 Post-translational modification -- 1.9.1.2.3 Quantity -- 1.9.1.2.4 Subcellular distribution -- 1.9.1.2.5 Organ specialization -- 1.9.2 Industrial applications -- 2. Different methods for enzymes immobilization in nanomaterials -- 2.1 Adsorption -- 2.2 Covalent bonding -- 2.3 Entrapment -- 2.4 Cross-linking -- 2.5 Bio-affinity interactions and other techniques -- 3. Enzymes immobilization on different nanomaterial -- 3.1 Immobilization of carbonaceous nanomaterials -- 3.2 Carbon nanotube -- 3.2.1 Graphene -- 3.2.2 Graphene oxide and reduced graphene oxide -- 3.3 Immobilization on metal/metal oxides nanomaterials -- 3.3.1 Metal nanomaterial -- 3.3.2 Metal hydroxide -- 3.3.3 Metal oxide nanomaterials -- 3.4 Immobilization of conductive polymers -- 3.5 Enzyme immobilization on other materials -- 4. Application of immobilized enzymes on nanomaterials. , 4.1 Electrochemical sensing applications of enzyme immobilized on nanomaterials -- 4.1.1 Amperometric biosensors -- 4.1.2 Potentiometric biosensors -- 4.1.2.1 Ion selective electrode -- 4.1.2.2 Enzyme field-effect transistors -- 4.1.2.3 Light addressable potentiometric sensors -- 4.1.3 Conductometry -- 4.1.4 Impedimetric enzyme biosensors -- 4.2 Fuel cell applications of enzyme immobilized on nanomaterials -- 4.3 Bio-sensor applications of enzyme immobilized on nanomaterials -- 4.4 Enzyme nanoparticles for biomedical application -- 4.4.1 Thrombolytic therapy -- 4.4.2 Oxidative stress and tnflammation therapy -- 4.4.3 Antibacterial treatment -- 4.5 Water contaminants treatment applications of enzyme immobilized on nanomaterials -- 4.5.1 Removal of emerging content -- 4.5.2 Disinfection -- 4.6 Water contaminants monitoring applications of enzyme immobilized on nanomaterials -- 4.6.1 Bacterial approach -- 4.6.2 Colorimetric approach -- 4.6.3 Electro-enzymatic approach -- 4.7 Other applications of immobilized enzymes on nanomaterials -- Conclusion -- References -- 2 -- Production, Properties and Applications of Materials-based Nano-Enzymes -- 1. Introduction -- 2. Production and properties of nanomaterial-based enzymes -- 2.1 Chemical synthesis of nanomaterial-based enzymes -- 2.2 Physical synthesis of nanomaterial-based enzymes -- 2.3 Biological synthesis of nanomaterial-based enzymes -- 2.4 Properties of nanomaterial-based enzymes -- 3. Application of nanomaterial-based enzymes in the food industry -- 3.1 Carbon-based nanomaterial enzyme biosensors -- 3.2 Zinc oxide-based nanomaterial enzyme biosensors -- 3.3 Magnetite-based nanomaterial enzyme biosensors -- 3.4 Copper cluster-based nanomaterial enzyme biosensors -- 3.5 Noble metal-based nanomaterial enzyme biosensors -- 4. Challenges and prospects -- Conclusions -- References -- 3. , Use of Nanomaterials-Based Enzymes in the Food Industry -- 1. Introduction -- 2. Nanozymes and its features -- 3. Catalytic mechanism of nanomaterials based enzymes -- 4. Nanomaterials-based enzymes for food analysis -- 4.1 Metal oxide-based -- 4.2 Metal-based nanozymes -- 4.3 Metal-organic frameworks based nanozymes -- 4.4 Molecularly imprinted polymers (MIP)-Based -- 4.5 Carbon-based nanozymes -- 5. Schemes to improve substrate specificity of nanozymes -- 6. Some other applications in the food industry -- 6.1 Intentional adulteration -- 6.2 Detection system for insecticides -- 6.3 Design for detection of gram negative bacterium -- 6.4 Detection of ethanol -- 6.5 Mycotoxins -- 6.6 Other food contaminants detection -- 6.6.1 Lipopolysaccharide (LPS) -- 6.6.2 Hydroquinone (H2Q) -- 6.6.3 Arsenic-III -- 6.6.4 Norovirus (NoV) -- Conclusion -- Acknowledgment -- References -- 4 -- Nanomaterials Supported Enzymes: Environmental Applications for Depollution of Aquatic Environments -- 1. Introduction -- 2. Enzymes -- 3. Sources of enzymes and their applications -- 4. Enzyme immobilization -- 5. Methods of Immobilization -- 5.1 Adsorption -- 5.2 Entrapment -- 5.3 Covalent binding -- 5.4 Cross-linking -- 6. Nanosupports for enzyme immobilization -- 6.1 Silica nanosupports -- 6.2 Carbon nanosupports -- 6.3 Metallic nanosupports -- 7. Applications of nanosupported enzymes in the depollution of aquatic environment -- 7.1 Water treatment applications -- 7.1.1 Eradication of emerging pollutants -- 7.1.2 Disinfection -- 7.2 Water monitoring applications -- 7.2.1 Electro-enzymatic method -- 7.2.2 Colorimetric method -- 7.2.3 Bacterial monitoring -- Conclusion and Future Perspectives -- References -- 5 -- Enzyme Immobilized Nanoparticles Towards Biosensor Fabrication -- 1. Introduction -- 2. Enzyme immobilized nanomaterials -- 2.1 Metal nanomaterials. , 2.2 Metal oxide nanomaterials -- 2.3 Carbon-derived nanomaterials -- 2.4 Polymeric nanomaterials -- 2.5 Nanocomposites -- 3. Enzyme immobilized nanomaterial-based biosensors and their applications -- 3.1 Electrochemical biosensors -- 3.2 Optical biosensors -- 3.3 Piezoelectric and gravimetric biosensor -- 3.4 Magnetic biosensors -- 4. Future perspectives -- Conclusions -- References -- 6 -- Applications of Nanoparticles-based Enzymes in the Diagnosis of Diseases -- 1.1 Nanomaterials -- 1.2 Enzymes -- 1.3 Nanomaterials supported enzymes (NSEs) -- 2. Applications of nanomaterial supported enzymes (NSEs) -- 2.1 Role of NSEs in disease diagnosis and therapeutics -- 2.2 Use of NSEs in therapeutic -- 2.3 Applications of NSEs in biofilms and tumor prevention/disruption -- 2.4 The NSEs as enzymes inhibitors -- 2.5 Enzymatic Inhibition -- 2.6 Nanozymes for Inactivation/Inhibition of SARS-CoV-2 -- 3. Role in biology and medicine -- 4. Nanozymes for sensing applications -- 5. Cancer tumor and bacterial detection -- 6. Imaging, diagnostics and biomarker monitoring -- 7. Role in HIV reactivation -- 8. Nanozymes for live cell and organelle imaging -- 9. The role of nanozymes in cardiovascular diseases (CVDS) -- 10. Diagnosis of CVDs -- 11. Applications of Nanozymes in the treatment of CVDs -- 12 The role of nanozymes in cyto-protecting -- 13. Advances of nanozymes in the neural disorders -- 14. Future prospects of NSEs -- Conclusions -- References -- 7 -- Drug Delivery using Nano-Material based Enzymes -- 1. Introduction to Nanozymes -- 2. Categorical distribution of nanozymes based on material type -- 2.1 Metal-based nanozymes -- 2.2 Fe-based nanozymes -- 2.3 Carbon-based nanozymes -- 3. Major Classes of nano-enzyme based on mode of action -- 3.1 Antioxidant nanozymes -- 3.2 Superoxide dismutase (SOD) antioxidant nanozymes -- 3.3 Pro-oxidant nanozymzes. , 4. Nanoparticles with enzyme-responsive linker -- 5. Nanozymes preparation -- 5.1 Hydrothermal method -- 5.2 Solvothermal method -- 5.3 Co-precipitation method -- 6. Development of endogenous enzyme-responsive nanomaterials -- 6.1 Synthesis of nanomaterials with enzyme-responsive core -- 6.2 Nanoparticles construction with enzyme responsive crown -- 6.3 Modification of nanomaterials with enzyme responsive linker -- 6.4 Nanoparticles and enzyme-responsive ligands -- 7. Factors affecting nanozymes activity -- 7.1 Morphology -- 7.2 Size -- 7.3 Surface modifications -- 8. Therapeutic applications of nanozymes -- 8.1 Cytoprotection -- 8.2 Nano carriers -- 8.3 Nanozymes as antibacterial, anti-inflammatory and antibiofilm agents -- 8.4 Nanomaterials based targeted drug delivery to overcome tuberculosis (TB) -- 8.5 Anti-tumor drug delivery via enzyme-responsive NPs -- 9. Limitations of nanozymes -- Conclusion -- References -- 8 -- Biomedical uses of Enzymes Immobilized by Nanoparticles -- 1. Introduction -- 2. Enzymes immobilization methods -- 3. Choice of supports -- 3.1 Entrapment -- 3.2 Crosslinking -- 3.3 Covalent attachment -- 3.4 Adsorption -- 4. Carrier bound method: general concept -- 5. Degradation of dye pollutants -- 6. Fe3O4 along with L-asparaginase -- 7. Chitin and chitosan support material for immobilization -- 7.1 Biomedical applications -- 8. Zinc oxide nano-particles -- 9. Modern applications -- 9.1 Biosensor -- 9.2 MnFe2O4@SiO2@PMIDA magnetic nanoparticles for antibody immobilization -- Conclusion -- Acknowledgment -- References -- 9 -- Use of Nanomaterials-based Enzymes in Vaccine Production and Immunization -- 1. Intrоduсtiоn -- 2. Enzymes -- 2.1 Hоw enzymes wоrk -- 2.2 Natural and Artificial Enzymes -- 3. Nаnоzymes -- 4. Nаnоzymes in vассine рrоduсtiоn аnd immunizаtiоn -- 4.1 Nаnоmаteriаl-bаsed enzymes in vассine рrоduсtiоn. , 4.1.1 Nаnоflu.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Porous materials. ; Electronic books.
    Description / Table of Contents: Internationally assembled experts in the field describe developments and advances in synthesis, tuning parameters, and applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9781000567168
    DDC: 547/.7
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Introduction to Porous Polymers -- 1.1 Introduction -- 1.2 Types of Porous Polymers -- 1.3 Synthetic Methods for Porous Polymer Network -- 1.4 Conclusion -- References -- Chapter 2: Hyper-crosslinked Polymers -- 2.1 Introduction -- 2.1.1 Overview -- 2.1.2 Porous Polymer -- 2.1.3 Crosslinking -- 2.2 Hyper-crosslinked Polymers -- 2.3 Synthesis Methods of HCPs -- 2.3.1 Post-crosslinking Polymer Precursors -- 2.3.2 Direct One-Step Polycondensation -- 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers -- 2.4 Structure and Morphology of HCPs -- 2.4.1 Nanoparticles -- 2.4.2 Hollow Capsules -- 2.4.3 2D Membranes -- 2.4.4 Monoliths -- 2.5 HCPs Properties -- 2.5.1 Polymer Surface -- 2.5.1.1 Hydrophilicity -- 2.5.1.2 Hydrophobicity -- 2.5.1.3 Amphiphilicity -- 2.5.2 Porosity and Surface Area -- 2.5.3 Swelling Behavior -- 2.5.4 Thermomechanical Properties -- 2.6 Functionalization of HCPs -- 2.7 Characterization of HCPs -- 2.7.1 Compositional and Structural Characterization -- 2.7.2 Morphological Characterization -- 2.7.3 Porosity and Surface Area Analysis -- 2.7.4 Other Analysis -- 2.8 Applications -- 2.8.1 Storage Capacity -- 2.8.1.1 Storage of Hydrogen -- 2.8.1.2 Storage of Methane -- 2.8.1.3 CO 2 Capture -- 2.8.2 Environmental Remediation -- 2.8.3 Heterogeneous Catalysis -- 2.8.4 Drug Delivery -- 2.8.5 Sensing -- 2.8.6 Other Applications -- 2.9 Conclusion -- References -- Chapter 3: Porous Ionic Polymers -- 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers -- 3.2 Ionic Polymers in Dry State -- 3.3 Ionic Polymers in Swollen State: Hsu-Gierke Model -- 3.4 Modifications of Hsu-Gierke Model: Hydration of Ion Exchange Polymers. , 3.5 Methods for Research of Porous Structure of Ionic Polymers -- 3.5.1 Nitrogen Adsorption-Desorption -- 3.5.2 Mercury Intrusion -- 3.5.3 Adsorption-Desorption of Water Vapor -- 3.5.4 Differential Scanning Calorimetry -- 3.5.5 Standard Contact Porosimetry -- 3.6 Conclusions -- References -- Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics -- 4.1 Introduction -- 4.2 Sorting of Porous Polymers -- 4.2.1 Macroporous Polymers -- 4.2.2 Microporous Polymers -- 4.2.3 Mesoporous Polymers -- 4.3 Methodology -- 4.3.1 AHP Analysis -- 4.4 Conclusions -- References -- Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology -- 5.1 Background -- 5.2 Porous Polymers Based on Natural Polysaccharides -- 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure -- 5.4 Supercritical Fluid Drying for Porous Polymers Processing -- 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology -- 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging -- 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating -- 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid -- 5.9 Porous Metal-Organic Frameworks Polymers by Supercritical Fluid Processing -- 5.10 Concluding Remarks -- Acknowledgments -- References -- Chapter 6: Porous Polymer for Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Stability and Functionalization of POPs -- 6.3 Strategies for Synthesizing POP Catalyst -- 6.3.1 Co-polymerization -- 6.3.1.1 Acidic and Basic Groups -- 6.3.1.2 Ionic Groups -- 6.3.1.3 Ligand Groups -- 6.3.1.4 Chiral Groups -- 6.3.1.5 Porphyrin Group -- 6.3.2 Self-polymerization -- 6.3.2.1 Organic Ligand Groups -- 6.3.2.2 Organocatalyst Groups -- 6.3.2.3 Ionic Groups -- 6.3.2.4 Chiral Ligand Groups -- 6.3.2.5 Porphyrin Groups. , 6.4 Applications of Various Porous Polymers -- 6.4.1 CO 2 Capture and Utilization -- 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP -- 6.4.1.1.1 Mechanism of the Cycloaddition Reaction -- 6.4.1.2 Triphenylphosphine-based POP -- 6.4.2 Energy Storage -- 6.4.3 Heterogeneous Catalysis -- 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction -- 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins -- 6.4.3.3 Ni(II)-metallated POP for Suzuki-Miyaura Crosscoupling Reaction -- 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 -- 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols -- 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs -- 6.4.4 Photocatalysis -- 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units -- 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst -- 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles -- 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst -- 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole -- 6.4.5 Electrocatalysis -- 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) -- References -- Chapter 7: Triazine Porous Frameworks -- 7.1 Introduction -- 7.2 Synthetic Procedures of CTFs and Their Structural Designs -- 7.2.1 Ionothermal Trimerization Strategy -- 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method -- 7.2.3 Amidine-based Polycondensation Methods -- 7.2.4 Superacid Catalyzed Method -- 7.2.5 Friedel-Crafts Reaction Method -- 7.3 Applications of CTFs -- 7.3.1 Adsorption and Separation -- 7.3.1.1 CO 2 Capture and Separation -- 7.3.1.2 The Removal of Pollutants -- 7.3.2 Heterogeneous Catalysis -- 7.3.3 Applications for Energy Storage and Conversion -- 7.3.3.1 Metal-Ion Batteries -- 7.3.3.2 Supercapacitors. , 7.3.4 Electrocatalysis -- 7.3.5 Photocatalysis -- 7.3.6 Other Applications of CTFs -- References -- Chapter 8: Advanced Separation Applications of Porous Polymers -- 8.1 Introduction -- 8.2 Advanced Separation Applications -- 8.3 Separation through Adsorption -- 8.4 Water Treatment -- 8.5 Conclusion -- Abbreviations -- References -- Chapter 9: Porous Polymers for Membrane Applications -- 9.1 Introduction -- 9.2 Introduction to Synthesis of Porous Polymeric Particles -- 9.3 Preparation of Porous Polymeric Membrane -- 9.4 Morphology of Membrane and Its Parameters -- 9.5 Emerging Applications of Porous Polymer Membranes -- 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application -- 9.6.1 Polysulfone Membranes -- 9.6.2 Polyvinylidene Fluoride Membranes -- 9.7 Use of Porous Polymeric Membranes for Sensing Application -- 9.8 Use of Porous Polymeric Electrolytic Membranes Application -- 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization -- 9.10 Use of Porous Polymers for Biomedical Application -- 9.11 Use of Porous Polymeric Membrane in Tissue Engineering -- 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment -- 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application -- 9.14 Porous Polymeric Membrane Antifouling Application -- 9.15 Porous Polymeric Membrane Used for Fuel Cell Application -- 9.16 Conclusion -- References -- Chapter 10: Porous Polymers in Solar Cells -- 10.1 Introduction -- 10.1.1 Si-based Solar Cells -- 10.1.2 Thin-film Solar Cells -- 10.1.3 Organic Solar Cells -- 10.2 Porous Polymers in DSSCs -- 10.2.1 Porous Polymers in Electrodes -- 10.2.2 Porous Polymer as a Counter Electrode -- 10.2.3 Porous Polymers in TiO 2 Photoanode -- 10.2.4 Porous Polymers in Electrolyte -- 10.2.5 Porous Polymer as Energy Conversion Film. , 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes -- 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) -- 10.2.6 Porous Polymers in Coating of Solar Cell -- 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst -- 10.3 Perovskite Solar Cells -- 10.3.1 Porous Polymers in Electron Transport Layers -- 10.3.2 Porous Polymers in Hole Transport Layers -- 10.3.3 Porous Polymer as Energy Conversion Film -- 10.3.4 Porous Polymers as Interlayers -- 10.3.5 Porous Polymers in Morphology Regulations -- 10.4 Porous Polymers in Silicon Solar Cell -- 10.5 Miscellaneous -- 10.5.1 Porous Polymers in Solar Evaporators -- 10.5.2 Charge Separation Systems in Solar Cells -- 10.5.3 Porous Polymers in ZnO Photoanode -- 10.6 Conclusions -- References -- Chapter 11: Porous Polymers for Hydrogen Production -- 11.1 Introduction -- 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) -- 11.1.1.1 Infiltration -- 11.1.1.2 Layer-by-Layer Assembly (LbL) -- 11.1.1.3 Conventional Polymerization -- 11.1.1.4 Electrochemical Polymerization -- 11.1.1.5 Controlled/Living Polymerization (CLP) -- 11.1.1.6 Macromolecular Design -- 11.1.1.7 Self-assembly -- 11.1.1.8 Phase Separation -- 11.1.1.9 Solid and Liquid Templating -- 11.1.1.10 Foaming -- 11.2 Various Porous Polymers for H 2 Production -- 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers -- 11.2.2 Conjugated Microporous Polymers -- 11.2.3 Porous Conjugated Polymer (PCP) -- 11.2.4 Membrane Reactor -- 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure -- 11.2.6 Porous Organic Polymers (POPs) -- 11.2.7 PEM Water Electrolysis -- 11.2.8 Microporous Inorganic Membranes -- 11.2.9 Hybrid Porous Solids for Hydrogen Evolution -- 11.3 Other Alternatives for Hydrogen Production -- 11.3.1 Metal-Organic Frameworks (MOFs) -- 11.3.2 Covalent Organic Frameworks. , 11.3.3 Photochemical Device.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323998178
    DDC: 621.312424
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (590 pages)
    Edition: 1st ed.
    ISBN: 9780323996440
    DDC: 620.1180286
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents the current status of superconductor science and technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (266 pages)
    Edition: 1st ed.
    ISBN: 9781644902110
    Series Statement: Materials Research Foundations Series ; v.132
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Basic Concepts and Properties of Superconductors -- 1. Introduction and background -- 2. History of superconductors -- 3. Superconductors vs perfect conductors -- 4. Phenomenon of superconductivity -- 4.1 Zero resistance -- 4.2 Super-electron -- 4.3 Critical temperature for superconductors -- 5. Classification of superconductors -- 6. Properties of superconductor -- 6.1 Evanesce of electrical resistance -- 6.2 Flux lines and diamagnetism -- 6.3 Flux quantization in superconductors -- 6.4 Quantum interference -- 6.5 Josephson current -- Conclusion -- References -- 2 -- Properties and Types of Superconductors -- 1. Introduction -- 1.1 The Meissner effect and superconductors -- 2. History of superconductors -- 3. Types of superconductors -- 3.1 Type I superconductors -- 3.1.1 Examples -- 3.2 Type II superconductors -- 3.2.1 Examples -- 4. Comparisons between type I and type II superconductors -- 4.1 Meissner effect -- 4.2 Conduction of electrons -- 4.3 Surface energy -- 5. Superconducting materials -- 5.1 Metal based system superconductors -- 5.2 Copper oxides (Cuprates) -- 5.3 Iron based superconductors -- 6. Properties of superconductors -- Conclusion -- References -- 3 -- Fundamentals and Properties of Superconductors -- 1. Introduction -- 2. Types of superconductors -- 2.1 Type I and II superconductors -- 2.2 Organic superconductors -- 2.3 Magnetic superconductors -- 2.4 High temperature superconductors (HTS) -- 3. Properties of superconductors -- 3.1 Zero electric resistance -- 3.2 Meissner effect -- 3.3 Transition temperature -- 3.4 Critical current -- 3.5 Persistent currents -- 3.6 Idealized diamagnetisms, flux lines, with its quantization -- 3.7 Flux quantization -- 3.8 Josephson current -- 3.9 Josephson current in a magnetic field. , 3.10 Superconducting quantum interference device (SQUID) -- 3.11 Superconductivity: A macroscopic quantum phenomenon -- 3.12 Critical magnetic field -- Conclusion -- References -- 4 -- Superconductors for Large-Scale Applications -- 1. Introduction -- 2. Meissner effect: Attribute to superconductors -- 3. Advanced power transmission system -- 4. Super conducting electrical power devices -- 5. Advanced power storage system -- 6. Modern transportation -- 7. Advanced accelerators -- 8. Magnetic resonance devices -- 8.1 Magnetic resonance imaging for medical diagnostics -- 8.2 NMR spectroscopy -- 8.3 Fast field cycle relaxometer -- 9. SQUID -- Conclusion -- References -- 5 -- Lanthanide-based Superconductor and its Applications -- 1. Introduction -- 2. Lanthanide-based superconductors -- 2.1 Preparation methods -- 2.1.1 Solid state reaction processes -- 2.1.2 Laser heating -- 2.1.3 High-pressure synthesis -- 2.2 Characterization of lanthanide-based superconductors -- 2.3 Superconducting properties of the LBSC -- 2.4 Applications of LBSC -- Conclusions -- References -- 6 -- Type I Superconductors: Materials and Applications -- 1. Introduction -- 2. Type-I superconductors -- 3. History of superconductivity -- 3.1. Quest for low temperature -- 3.2 Discovery of Helium -- 3.3 Curiosity to know the resistance of metals at absolute zero? -- 3.4 Why mercury used to measure low-temperature resistance? -- 4. Attributes of superconductors -- 4.1 Current in a superconductor coil -- 4.2 How superconductors behave in an external magnetic field? -- 4.3 Unification of electric and magnetic behaviour -- 5. Characteristics of type-I superconductors -- 5.1 Critical Temperature (TC) -- 5.2 Meissner effect or perfect diamagnetism -- 5.3 Critical magnetic field (HC) -- 5.4 Critical current (IC) -- 5.5 Isotope effect -- 5.6 Development of theories of superconductivity. , 5.6.1 London equations and penetration depth -- 5.6.2 Ginzburg and Landau theory -- 5.6.3 BCS theory -- 5.7 Breakthroughs and outcomes of theoretical research -- 6. Applications -- 7. Issues with type-I superconductors -- References -- 7 -- Bulk Superconductors: Materials and Applications -- 1. Introduction -- 2. New era of high temperature superconductor -- 3. Type-II superconductors -- 4. Characteristics of type-II superconductors -- 4.1 Critical temperature (TC) -- 4.2 Critical magnetic field (HC) -- 4.3 Meissner effect or perfect diamagnetism -- 5. Different types of bulk superconductors -- 5.1 Alloys -- 5.2 Niobium alloys -- 5.3 Oxides, cuprates and ceramics -- 5.4 Fullerenes -- 6. Applications -- 6.1 Superconductor magnets and ordinary electromagnets -- 6.2 High field magnets -- 6.3 Magnetic levitation -- 6.4 Medical applications -- 6.5 Detectors -- 6.6 Josephson junctions -- Conclusion and future outlook -- Reference -- 8 -- Soft Superconductors: Materials and Applications -- 1. Introduction -- 2. Type 1 Superconductors -- 3. Structural properties of superconductors -- 4. A3B structure superconductors -- 5. MMo6X8& -- M2A3X3 structures superconductors -- 6. Cuprate superconductors structures -- 7. Production of superconductors -- 8. Wire production -- 9. Thin films production -- 10. Superconductor applications -- Conclusion -- References -- 9 -- Oxide Superconductors -- 1. Background -- 2. Unusual properties super conducting materials and proposed theories and hypothesis -- 3. Cooper pair model -- 4. Crystal structure analysis of superconducting materials -- 5. Applications of oxide superconductor -- Conclusions -- References -- 10 -- High Temperature Superconductors: Materials and Applications -- 1. Introduction -- 2. Science of HTSC -- 3. Nickel based HTSC -- 4. HTSC for fusion reactors. , 5. HTSC magnetic energy storage for power applications -- 6. HTSC materials based on bismuth -- 7. HTSC in co-axial magnetic gear -- Conclusions -- References -- 11 -- Superconducting Metamaterials and their Applications -- 1. Superconducting materials -- 2. Metamaterials -- 2.1 Low loss metamaterials -- 2.2 Scaling of SRR properties -- 2.3 Scaling of wire array properties -- 3. Novel superconducting metamaterial implementations -- 3.1 Ferromagnet- superconductor composites -- 3.2 DC magnetic superconducting metamaterials -- 3.3 SQUID metamaterials -- 4. Superconducting photonic crystal -- 5. Thin film superconducting metamaterial -- 6. Advantages of metamaterials -- 6.1 Compact superconducting materials -- 6.2 Tuneability and nonlinearity -- 6.3 Implementations of superconducting metamaterials -- 7. Novel applications -- Conclusion -- References -- 12 -- Superconductors for Medical Applications -- 1. Introduction -- 2. Medical applications -- 2.1 Magnetic resonance imaging (MRI) -- 2.1.1 Quench protection design of MRI superconducting magnet -- 2.1.2 Open MRI superconducting magnet -- 2.1.3 MRI food inspection system -- 2.2 Magnetic gene transfer -- 2.3 Magnetic drug delivery system -- 2.4 Cancer and internal hemorrhage detection -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors -- Superconductors for Magnetic Imaging Resonance Applications -- 1. Introduction -- 2. History of superconductor materials for MRI -- 2.1 Liquid helium free SN2 high-temperature fuperconductor magnet -- 2.2 Bismuth strontium calcium copper oxide (Bi2223): First SN2-HTS magnet -- 2.3 Magnesium diboride superconductors -- 2.3.1 Challenges and prospects for MgB2 MRI magnets -- 3. Potential superconductors for MRIs -- 3.1 Nb-Ti and Nb3Sn superconductors -- 3.2 Copper based superconductors. , 3.3 Rare - earth barium copper oxide superconductors (REBCO) -- 3.4 MgB2 superconductors -- 3.5 Iron-based superconductors (IBS) -- 4. Materials' and their applications' prospects in the future -- Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...