GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (3)
  • 2020-2024  (3)
  • 2021  (3)
  • 1
    Publication Date: 2024-02-07
    Description: The upwelling area off Peru is characterized by exceptionally high rates of primary productivity, mainly dominated by diatoms, which require dissolved silicic acid (dSi) to construct their frustules. The silicon isotope compositions of dissolved silicic acid (δ 30 Si dSi ) and biogenic silica (δ 30 Si bSi ) in the ocean carry information about dSi utilization, dissolution, and water mass mixing. Diatoms are preserved in the underlying sediments and can serve as archives for past nutrient conditions. However, the factors influencing the Si isotope fractionation between diatoms and seawater are not fully understood. More δ 30 Si bSi data in today’s ocean are required to validate and improve the understanding of paleo records. Here, we present the first δ 30 Si bSi data (together with δ 30 Si dSi ) from the water column in the Peruvian Upwelling region. Samples were taken under strong upwelling conditions and the bSi collected from seawater consisted of more than 98% diatoms. The δ 30 Si dSi signatures in the surface waters were higher (+1.7‰ to +3.0‰) than δ 30 Si bSi (+1.0‰ to +2‰) with offsets between diatoms and seawater (Δ 30 Si) ranging from −0.4‰ to −1.0‰. In contrast, δ 30 Si dSi and δ 30 Si bSi signatures were similar in the subsurface waters of the oxygen minimum zone (OMZ) as a consequence of a decrease in δ 30 Si dSi . A strong relationship between δ 30 Si bSi and [dSi] in surface water samples supports that dSi utilization of the available pool (70 and 98%) is the main driver controlling δ 30 Si bSi . A comparison of δ 30 Si bSi samples from the water column and from underlying core-top sediments (δ 30 Si bSi_ sed. ) in the central upwelling region off Peru (10°S and 15°S) showed good agreement (δ 30 Si bSi_ sed. = +0.9‰ to +1.7‰), although we observed small differences in δ 30 Si bSi depending on the diatom size fraction and diatom assemblage. A detailed analysis of the diatom assemblages highlights apparent variability in fractionation among taxa that has to be taken into account when using δ 30 Si bSi data as a paleo proxy for the reconstruction of dSi utilization in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The global silicon (Si) cycle plays a critical role in regulating the biological pump and the carbon cycle in the oceans. A promising tool to reconstruct past dissolved silicic acid (DSi) concentrations is the silicon isotope signature of radiolaria (δ 30 Si rad ), siliceous zooplankton that dwells at subsurface and intermediate water depths. However, to date, only a few studies on sediment δ 30 Si rad records are available. To investigate its applicability as a paleo proxy, we compare the δ 30 Si rad of different radiolarian taxa and mixed radiolarian samples from surface sediments off Peru to the DSi distribution and its δ 30 Si signatures (δ 30 Si DSi ) along the coast between the equator and 15°S. Three different radiolarian taxa were selected according to their specific habitat depths of 0–50 m ( Acrosphaera murrayana ), 50–100 m ( Dictyocoryne profunda/truncatum ), and 200–400 m ( Stylochlamydium venustum ). Additionally, samples containing a mix of species from the bulk assemblage covering habitat depths of 0 to 400 m have been analyzed for comparison. We find distinct δ 30 Si rad mean values of +0.70 ± 0.17‰ ( Acro ; 2 SD), +1.61 ± 0.20 ‰ ( Dictyo ), +1.19 ± 0.31 ‰ ( Stylo ) and +1.04 ± 0.19 ‰ (mixed radiolaria). The δ 30 Si values of all individual taxa and the mixed radiolarian samples indicate a significant ( p 〈 0.05) inverse relationship with DSi concentrations of their corresponding habitat depths. However, only δ 30 Si of A. murrayana are correlated to DSi concentrations under normally prevailing upwelling conditions. The δ 30 Si of Dictyocoryne sp., Stylochlamydium sp., and mixed radiolaria are significantly correlated to the lower DSi concentrations either associated with nutrient depletion or shallower habitat depths. Furthermore, we calculated the apparent Si isotope fractionation between radiolaria and DSi (Δ 30 Si ∼ 30 ε = δ 30 Si rad − δ 30 Si DSi ) and obtained values of −1.18 ± 0.17 ‰ ( Acro ), −0.05 ± 0.25 ‰ ( Dictyo ), −0.34 ± 0.27 ‰ ( Stylo ), and −0.62 ± 0.26 ‰ (mixed radiolaria). The significant differences in Δ 30 Si between the order of Nassellaria ( A. murrayana ) and Spumellaria ( Dictyocoryne sp. and Stylochlamydium sp.) may be explained by order-specific Si isotope fractionation during DSi uptake, similar to species-specific fractionation observed for diatoms. Overall, our study provides information on the taxon-specific fractionation factor between radiolaria and seawater and highlights the importance of taxonomic identification and separation to interpret down-core records.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The sluggish water mass transport in the deeper North Pacific Ocean complicates the assessment of formation, spreading and mixing of surface, intermediate and deep-water masses based on standard hydrographic parameters alone. Geochemical tracers sensitive to water mass provenance and mixing allow to better characterize the origin and fate of the prevailing water masses. Here, we present dissolved neodymium (Nd) isotope compositions (ε Nd ) and concentrations ([Nd]) obtained along a longitudinal transect at ∼180°E from ∼7°S to ∼50°N. The strongest contrast in Nd isotope signatures is observed in equatorial regions between surface waters (ε Nd ∼0 at 4.5°N) and Lower Circumpolar Deep Water (LCDW) prevailing at 4500 m depth (ε Nd = −6.7 at 7.2°N). The Nd isotope compositions of equatorial surface and subsurface waters are strongly influenced by regional inputs from the volcanic rocks surrounding the Pacific, which facilitates the identification of the source regions of these waters and seasonal changes in their advection along the equator. Highly radiogenic weathering inputs from Papua-New-Guinea control the ε Nd signature of the equatorial surface waters and strongly alter the ε Nd signal of Antarctic Intermediate Water (AAIW) by sea water-particle interactions leading to an ε Nd shift from −5.3 to −1.7 and an increase in [Nd] from 8.5 to 11.0 pmol/kg between 7°S and 15°N. Further north in the open North Pacific, mixing calculations based on ε Nd , [Nd] and salinity suggest that this modification of the AAIW composition has a strong impact on intermediate water ε Nd signatures of the entire region allowing for improved identification of the formation regions and pathways of North Pacific Intermediate Water (NPIW). The deep-water Nd isotope signatures indicate a southern Pacific origin and subsequent changes along its trajectory resulting from a combination of water mass mixing, vertical processes and Nd release from seafloor sediments, which precludes Nd isotopes as quantitative tracers of deep-water mass mixing. Moreover, comparison with previously reported data indicates that the Nd isotope signatures and concentrations below 100 m depth essentially remained stable over the past decades, which suggests constant impacts of water mass advection and mixing as well as of non-conservative vertical exchange and bottom release.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...