GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (32)
  • 2005-2009
  • 2019  (32)
Document type
Keywords
Years
  • 2015-2019  (32)
  • 2005-2009
Year
  • 11
    facet.materialart.
    Unknown
    In:  EPIC3The General Assembly 2019 of the European Geosciences Union (EGU), 2019-04-07-2019-04-12
    Publication Date: 2019-06-14
    Description: Trait based indices constitute a versatile tool for the prediction of ecosystem functioning over large spatial scales and represent a promising approach to meet societal, political and regulatory demands. Here we investigate for the first time the ability of different trait based indices to predict nutrient fluxes of ammonium, nitrate, nitrite, silicate and phosphate under different environmental conditions. We hypothesize that irrigation traits, as applied in the newly proposed index “Community Irrigation Potential” (IPc), will increase the predictability of macrofaunal impact on nutrient fluxes compared to commonly used sediment reworking traits, as in the index “Community Bioturbation Potential” BPc. We correlate IPc and BPc with experimental nutrient flux data measured under different environmental conditions. Both trait based indices and environmental conditions significantly affected all analysed nutrient fluxes. We therefore conclude that neither the trait based indices nor the environmental conditions suffice for quantitative modelling of sediment biogeochemical turnover. Accordingly, information on of macrofaunal activity is needed to reliably predict biogeochemical turnover. Our results further demonstrate that generally nutrient fluxes of ammonium, nitrate, nitrite, silicate and phosphate are more closely linked to irrigation traits than to sediment reworking traits. In conclusion, linking macrofaunal bioirrigation to important environmental factors such as permeability, changing nutrient gradients in the water column and organic matter concentrations may strongly enhance performance of ecosystem models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Inter-Research
    In:  EPIC3Marine Ecology Progress Series, Inter-Research, 632, pp. 27-42, ISSN: 0171-8630
    Publication Date: 2020-01-10
    Description: This study shows that macrofaunal irrigation traits constitute a valuable complement to sediment reworking traits in estimating macrofaunal impact on nutrient fluxes across the sediment-water interface. We correlated density, biomass, community bioturbation potential (BPc, an index based on reworking traits, body mass and density) and community irrigation potential (IPc, an index based on irrigation traits, body mass and density) with nitrite, nitrate, ammonium, silicate and phosphate flux data under different environmental conditions. Generalized linear models performed best with a combination of environmental conditions and irrigation trait-based indices. This was not only a direct effect of the irrigation traits, but also of the scaling factor 0.75 employed in IPc to infer metabolic activity from body mass. Accordingly, predictive models of nutrient flux across the sediment-water interface will profit greatly from incorporating macrofaunal irrigation behaviour by means of trait-based indices.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 514-15(1-9), pp. 1-9, ISSN: 0022-0981
    Publication Date: 2019-03-21
    Description: Macrofaunal sediment reworking activity is a key driver of ecosystem functioning in marine systems. So far sediment reworking rates can only accurately be assessed by measurements as inference from community parameters is limited. In this case study we test the applicability of 2-D optical florescent sediment profile imaging (f-SPI) on multi corer type incubation cylinders. f-SPI has to date been applied to flat-surfaced (i.e. rectangular) cores only, while multi corer type incubation cylinders were analyzed by the spatially low resolved and invasive slicing technique. Here we apply both methods to cylindrical sediment cores (10 cm diameter). Cores were taken from by two common communities (i.e. Nucula-community and Amphiura-community) in the southern German Bight. Both f-SPI and the slicing technique showed similar vertical luminophore profiles. However the slicing technique found no significant differences between the two communities, whereas f-SPI showed significant differences for all investigated sediment reworking parameters: sediment reworking rate, non-locality index, mean weighted luminophore depth, and the maximal luminophore depth. Consequently, this may lead to different conclusions about the sediment reworking behaviors of the two communities. Likely the slicing method failed to detect significant differences between the Nucula- and Amphiura-community, owing to insufficient spatial accuracy. The f-SPI method, on the other hand, did not capture the full extent of maximal sediment reworking depth due to wall-effects. We conclude that both methods have specific drawbacks and advantages. While slicing is preferable when focusing on the absolute maximal sediment reworking depth especially with predominantly sessile communities, f-SPI is better suited to capture general sediment reworking patterns of most other communities. We demonstrate further that the bias, which is introduced by the distortion effect on imaging due to optical perspective and cylinder wall curvature of rounded cylinders using f-SPI, is negligible. Accordingly our results indicate that the distortion effects by curvature of the rounded cylinder walls will not cause underestimations of sediment reworking parameters in the f-SPI approach. Consequently f-SPI is suitable for the investigation of sediment reworking in natural communities by means of multi corer type samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    JCR
    In:  EPIC3Journal of Coastal Research, JCR, 35, pp. 369-376
    Publication Date: 2020-01-01
    Description: Owing to its extremely long life span and occurrence in the entire North Atlantic, the Arctic boreal Arctica islandica has become of particular significance for monitoring the environment, because information on past environmental conditions is archived in morphological and biogeochemical properties of the calcareous shell. To evaluate whether such properties are comparable between different localities, shell and soft body morphometry of six A. islandica populations, Norwegian Coast, Kattegat, Kiel Bay (Baltic), White Sea, German Bight (North Sea), and off NE Iceland, were compared. Discriminant analysis indicated distinct differences between populations, albeit not related to geographical distance, but more likely to local hydrography, bottom morphology, and food regime.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-01-01
    Description: Estuarine abiotic characteristics vary with tidal variations and fresh water input, both driven by climatic conditions and often cyclical climatic events. Estuaries are very productive and bivalves often represent a substantial proportion of the biomass with important ecological role. Salinity fluctuation is often a key environmental factor affecting bivalves shell growth and individual condition index (CI), parameters that in turn can be used to show the quality of the environment for one population. The stout razor clam Tagelus plebeius is an euryhaline filterfeeder species that inhabits sandy-silt tidal flats within a wide salinity range. The objective of this study was to evaluate, by survey sampling and in situ transplant experiments among sites with different salinity, whether shell growth and CI of T. plebeius vary with the salinity regime. We hypothesized a higher growth and CI related to the intermediate salinity. Clams and abiotic parameters were sampled in three estuaries of the northern Argentinian coast with different salinity regimes (Bahía Samborombón (36°19′S), Mar Chiquita coastal lagoon (37°32′S) and Bahía Blanca (38° 47′S)) and in three sites along the salinity gradient of the Mar Chiquita coastal lagoon where the manipulative experiments were also conducted. Shells were more elongated in sites with lower salinity; but the growth rate (k) and the CI were higher in sites with intermediate salinity. Furthermore, clams transplanted from intermediate salinity sites to those with higher or lower salinity showed a disadvantage in shell growth. Considering the scenario of climatic-driven salinity changes in these estuaries and given that T. plebeius is the only native bivalve species in those intertidal zones, having a relevant ecological role and conspicuous fossil presence in Holocene outcrops, our results highlight the relevance of this clam as a valuable target for future studies on conservation biology and paleobiology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-04-23
    Description: Secondary production, the growth of new heterotrophic biomass, is a key process in aquatic and terrestrial ecosystems that has been carefully measured in many flowing water ecosystems. We combine structural equation modeling with the first worldwide dataset on annual secondary production of stream invertebrate communities to reveal core pathways linking air temperature and precipitation to secondary production. In the United States, where the most extensive set of secondary production estimates and covariate data were available, we show that precipitation-mediated, low–stream flow events have a strong negative effect on secondary production. At larger scales (United States, Europe, Central America, and Pacific), we demonstrate the significance of a positive two-step pathway from air to water temperature to increasing secondary production. Our results provide insights into the potential effects of climate change on secondary production and demonstrate a modeling framework that can be applied across ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-11-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  EPIC3Workshop on data and modelling issues relevant to the planning of a potential Marine Protected Area (MPA) east of the zero meridian in the Weddell Sea (MAUD), Tromsø, Norway, 2019-05-13-2019-05-14
    Publication Date: 2019-11-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  EPIC3CCAMLR Working Group on Ecosystem, Monitoring and Management, Concarneau, France, 2019-06-24-2019-07-05
    Publication Date: 2019-11-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...