GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (11)
  • 2016  (11)
  • 1
    Online Resource
    Online Resource
    Bremerhaven : Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
    Keywords: Forschungsbericht ; Klima ; Modell
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (28 Seiten, 2,47 MB) , Diagramme, Karten
    Language: German
    Note: Förderkennzeichen BMBF 01LP1111A. - Verbund-Nummer 01097965 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Zusammenfassungen in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-25
    Description: Highlights: • Inter-annual to decadal variability in AMOC from CORE-II simulations is presented. • AMOC variability shows three stages, with maximum transports in mid- to late-1990s. • North Atlantic temporal variability features are in good agreement among simulations. • Such agreements suggest variability is dictated by the atmospheric data sets. • Simulations differ in spatial structures of variability due to ocean dynamics. Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958–2007 period from twenty global ocean – sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958–2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their temporal representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which include the influence of ocean dynamics from nature superimposed onto anthropogenic effects. Despite these general agreements, there are many differences among the model solutions, particularly in the spatial structures of variability patterns. For example, the location of the maximum AMOC variability differs among the models between Northern and Southern Hemispheres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Advances in Modeling Earth Systems, 8 (2). pp. 904-916.
    Publication Date: 2019-07-17
    Description: If unstructured meshes are refined to locally represent eddy dynamics in ocean circulation models, a practical question arises on how to vary the resolution and where to deploy the refinement. We propose to use the observed sea surface height variability as the refinement criterion. We explore the utility of this method (i) in a suite of idealized experiments simulating a wind-driven double gyre flow in a stratified circular basin and (ii) in simulations of global ocean circulation performed with FESOM. Two practical approaches of mesh refinement are compared. In the first approach the uniform refinement is confined within the areas where the observed variability exceeds a given threshold. In the second one the refinement varies linearly following the observed variability. The resolution is fixed in time. For the double gyre case it is shown that the variability obtained in a high-resolution reference run can be well captured on variable-resolution meshes if they are refined where the variability is high and additionally upstream the jet separation point. The second approach of mesh refinement proves to be more beneficial in terms of improvement downstream the midlatitude jet. Similarly, in global ocean simulations the mesh refinement based on the observed variability helps the model to simulate high variability at correct locations. The refinement also leads to a reduced bias in the upper-ocean temperature
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Highlights: • Mean circulation patterns are assessed and Kuroshio transport is underestimated. • Water mass distribution is compared and analyzed within COREII models. • Main biases of deep MLDs result from the inaccurate Kuroshio separation. • Reasonable modeled tropical dynamics but a discrepancy from the surface wind. Abstract: We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger interior transport of Pacific subtropical cells than the observation due to the overestimated transport in the Northern Hemisphere likely resulting from the deep pycnocline
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-29
    Description: State-of-the-art climate models do still exhibit pronounced deviations from the measured climate. Those deviations are often common between those models. The challenging problems in the Northern hemisphere include warming and salinization of the deep ocean being most pronounced in the northern North Atlantic, reduced deep water formation in the Labrador Sea which is sometimes accomplished by the sporadic ice coverage of the whole Labrador Sea, and an extensive ice presence in the Barents Sea. All these biases are often attributed in literature to the lack of oceanic resolution. The multi-resolution approach used in the ocean component of the AWI climate model (ECHAM6-FESOM) allows to use enhanced horizontal resolution in dynamical active regions while keeping a coarse-resolution setup everywhere else. In this study we develop strategies for improving the climate model biases by means of increasing resolution in the ocean. The current computations have been performed on multi-centennial time scales using refinement in the different parts of the global ocean. Benefits from the local refinement have been analyzed. It is found that already with moderate refinement of the unstructured ocean grid, AWI-CM performs as well as some of the most sophisticated climate models participating in CMIP5.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    CLIVAR
    In:  EPIC3CLIVAR Open Science Conference: Charting the course for climate and ocean research, Qingdao, China, 2016-09-18-2016-09-25Qingdao, China, CLIVAR
    Publication Date: 2017-01-25
    Description: Ocean model biases such as the North West corner cold bias connected to the location of the Gulf Stream path, the warm bias in upwelling zones, the warm bias in the Southern Ocean, and model drift like the deep ocean warm bias which tends to peak in around 800 to 1000 m depth in the Atlantic Ocean are issues common among state-of-the-art ocean models. These issues are often amplified when the ocean model is coupled to an atmosphere model to perform climate simulations. Furthermore, unrealistic freezing of the Labrador Sea is an issue in various climate models. With the unstructured mesh approach in our Finite Element Sea ice Ocean Model (FESOM) we are able to systematically investigate the benefits of local refinement of the ocean model grid both in an uncoupled set-up (sea-ice ocean only) as well as in a fully coupled climate model (atmosphere- land-sea ice-ocean). While the horizontal ocean model resolution is 25 km on average in the finer grids, we refine the grids in some key areas to up to 5 km. Therefore we can explicitly resolve ocean eddies and simulate eddy-mean flow interactions in these key areas. The atmosphere-land component of our AWI-CM (Alfred Wegener Institute Climate Model) is ECHAM6-JSBACH developed at the Max-Planck-Institute for Meteorology in Hamburg, Germany. Here we present results of century-long uncoupled and coupled simulations on ocean model grids with different local refinements while keeping the atmosphere resolution constant in the coupled simulations. Results indicate that high horizontal resolutions in key regions such as the Gulf Stream / North Atlantic Current area or the Agulhas Stream can reduce biases such as the North West corner cold bias and the deep ocean model drift.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3High - resolution Ocean Modelling for Coupled Seamless Predictions Workshop (HRCP), Met Office, Exeter, UK, 2016-04-13-2016-04-15
    Publication Date: 2017-01-30
    Description: The recently established AWI Climate Model (AWI-CM), a coupled configuration of the Finite Element Sea Ice-Ocean Model (FESOM) with the atmospheric model ECHAM6, uses a novel multi-resolution approach: Its ocean component builds on a finite element dynamical core supporting unstructured triangular surface grids, allowing to distribute the grid points in a flexible manner. This allows to concentrate resolution in dynamically important regions, with a continuous transition zone to the coarser resolution in other areas. The model is an ideal tool to study the influence of explicit resolution of smaller scales in dedicated experiments. The unique – spatially seamless – approach might also be of benefit when it comes to temporally seamless prediction, bridging the gap between numerical weather prediction and climate models. A first benchmark set-up of AWI-CM with moderate resolution in the atmosphere (T63) and 25km in key ocean areas, e.g. around the equator, achieved a similar overall simulation performance in a long control simulation compared to well-established CMIP5 models. In particular, the (isotropically) increased equatorial resolution considerably increased the realism of TIW activity and ENSO-related variability compared to standard resolutions. The potential of AWI-CM is further exploited within the EU project PRIMAVERA in the HighResMIP of CMIP6, where we plan to contribute simulations with eddy-resolving resolutions (1/12° or 9-10 km) in key areas of the global ocean, such as the Gulf Stream-North Atlantic Current region, the Agulhas retroflection zone, or the Arctic basin. First simulations show distinct improvements with respect to the development of deep temperature and salinity biases in the North Atlantic Ocean and an overall improvement of surface biases. At even higher resolutions of 4.5 km locally in the Arctic, linear kinematic features emerge in the simulated sea ice distribution with potentially strong impacts on air-sea fluxes in the coupled system. Although the tested set-ups are computationally very demanding (with numbers of grid points comparable to a regular 0.25° grid), the throughput is high at about 8 simulated years per day because of high scalability. In addition, we are about to finish the development of a finite volume version of the ocean model code (FESOM 2). It is already faster than the original FESOM version by a factor of two to three, which will further enlarge the set of computationally feasible applications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Dynamical Core Model Intercomparison Project, DCMIP2016, NCAR Center Green, Boulder, Colorado, USA, 2016-06-06
    Publication Date: 2017-01-30
    Description: The recently established AWI Climate Model (AWI-CM), a coupled configuration of the Finite Element Sea Ice-Ocean Model (FESOM) with the atmospheric model ECHAM6, uses a novel multi-resolution approach: Its ocean component builds on a finite element dynamical core supporting unstructured triangular surface grids, allowing to distribute the grid points in a flexible manner. This allows to concentrate resolution in dynamically important regions, with a continuous transition zone to the coarser resolution in other areas. The model is an ideal tool to study the influence of explicit resolution of smaller scales in dedicated experiments. The unique – spatially seamless – approach might also be of benefit when it comes to temporally seamless prediction, bridging the gap between numerical weather prediction and climate models. A first benchmark set-up of AWI-CM with moderate resolution in the atmosphere (T63) and 25km in key ocean areas, e.g. around the equator, achieved a similar overall simulation performance in a long control simulation compared to well-established CMIP5 models. In particular, the (isotropically) increased equatorial resolution considerably increased the realism of TIW activity and ENSO-related variability compared to standard resolutions. The potential of AWI-CM is further exploited within the EU project PRIMAVERA in the HighResMIP of CMIP6, where we plan to contribute simulations with eddy-resolving resolutions (1/12° or 9-10 km) in key areas of the global ocean, such as the Gulf Stream-North Atlantic Current region, the Agulhas retroflection zone, or the Arctic basin. First simulations show distinct improvements with respect to the development of deep temperature and salinity biases in the North Atlantic Ocean and an overall improvement of surface biases. At even higher resolutions of 4.5 km locally in the Arctic, linear kinematic features emerge in the simulated sea ice distribution with potentially strong impacts on air-sea fluxes in the coupled system. Although the tested set-ups are computationally very demanding (with numbers of grid points comparable to a regular 0.25° grid), the throughput is high at about 8 simulated years per day because of high scalability. In addition, we are about to finish the development of a finite volume version of the ocean model code (FESOM 2). It is already faster than the original FESOM version by a factor of two to three, which will further enlarge the set of computationally feasible applications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC315th International workshop on Multi-scale (Un)-structured mesh numerical Modeling for coastal, shelf, and global ocean dynamics, Toulouse, 2016-09-27-2016-09-30
    Publication Date: 2016-12-14
    Description: Mesoscale eddies contribute to the dynamics of ocean circulation in many important ways. Resolving them in the context of global ocean simulations still present a challenge because the Rossby radius of deformation is highly variable and can be as small as several km at high latitudes. Models formulated on unstructured meshes provide a possibility of locally eddy resolving approach. However, a question arises on how to select the resolution, and how mesh variability may affect the eddy dynamics. We discuss a set of questions related to this topic showing that (i) the observed variability and the information on the behavior of the Rossby radius can be one of the criteria helping in mesh design and that (ii) there might be a delayed turbulence development downstream into a high-resolution domain. The latter means that the size of refined patches has to be sufficiently large to simulate the unbiased eddy dynamics. As resolution is increasing, the resolved eddy dynamics may contain a substantial ageostrophic component which may lead to a noisy signal in the vertical velocity on the mesh patches where the resolution is varied. The appearance of this noise depends on the details of discretization. Variable resolution also leads to a question how to combine the locally resolved eddy dynamics with the parameterized one over the coarse part. In a more broad context, even locally eddy-resolving global meshes are already large and approach in size the eddy-permitting and eddy-resolving meshes of global regular models (from 1/4 degree or finer, or 1M or more surface vertices), which implies massively parallel implementations. Our experience with FESOM1.4 shows that because of good parallel scalability the throughput (simulated model years/per day) reached on large meshes is very competitive to (not worse than) that shown by regular-mesh models, with only a moderately increased demand on computational resources. This in a way changes the message to the community on the numerical efficiency of unstructured-mesh models for global ocean applications: these models, especially the new finite-volume developments (MPAS, FESOM2, ICON), can be nearly as fast as the regular-mesh models in terms of their throughput.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-02-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...